
ASN.1
Communication between Heterogeneous Systems

Olivier Dubuisson

translated from French by Philippe Fouquart

http://asn1.elibel.tm.fr/en/book/
http://www.oss.com/asn1/booksintro.html

June 5, 2000

mailto:Olivier.Dubuisson@francetelecom.fr
mailto:Philippe.Fouquart@francetelecom.fr
http://asn1.elibel.tm.fr/en/book/
http://www.oss.com/asn1/booksintro.html

ASN.1
Communication between heterogeneous systems

by Olivier Dubuisson

ASN.1 (Abstract Syntax Notation One) is an international standard which aims
at specifying of data used in telecommunication protocols. It is a computing
language that is both powerful and complex: it was designed for modeling
efficiently communications between heterogeneous systems.

ASN.1 was in great need of a reference book, didactic as well as precise
and Olivier Dubuisson’s book meets these demands. The language is compre-
hensively described from its basic constructions to the latest additions to the
notation. The description of each of these constructions is wholly accessible
and accurate. Many case studies of real-world applications illustrate this pre-
sentation. The text also replaces the language in its historical background and
describes the context in which it is used, both from the application viewpoint
and from that of other specification standards which use or refer to ASN.1.

This book is written by an expert of ASN.1, of its syntax and semantics,
and clearly constitutes a reference on the language. It is intended for those
merely interested in finding a complete and reliable description of the language
and for programmers or experts who may want to look up for the proper usage
of some constructions. The tools available on the website associated with this
book will prove useful to both the proficient and the beginner ASN.1 user.

Michel Mauny
Project leader at INRIA, the French National Institute for Research in
Computer Science and Control

Olivier Dubuisson is a research engineer at France Télécom R&D, the Research

& Development centre of France Télécom (formerly known as Cnet), where he is in

charge of the ASN.1 expertise. He takes part in the language evolution at the ISO

and ITU-T working groups. He has also developed various editing and analysis tools

for ASN.1 specifications and assists the ASN.1 users at France Télécom in numerous

application domains.

Philippe Fouquart graduated from Aston University, UK with an MSc in Computer

Science and Applied Maths in 1997. He worked for Cnet on ASN.1:1994 grammar and

later joined France Télécom R&D in 1999 where he used ASN.1 for Intelligent Net-

work and SS7 protocols. He is now working on Fixed-Mobile Converged architectures

and IP mobility.

ISBN:0-12-6333361-0
c©OSS Nokalva, 2000

All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system, without
permission in writing from the owner of the copyright.

http://asn1.elibel.tm.fr/
http://www.inria.fr/~mauny
http://www.inria.fr/
mailto:Olivier.Dubuisson@francetelecom.fr
http://www.francetelecom.fr/rd/
http://asn1.elibel.tm.fr/en/tools/
mailto:Philippe.Fouquart@francetelecom.fr
http://www.francetelecom.fr/rd/
http://www.oss.com/
mailto:baos@oss.com,Olivier.Dubuisson@francetelecom.fr

To my parents

ii ASN.1 – Communication between Heterogeneous Systems

“All right, but do you think, notwithstand-
ing so major an unknown factor, that you can
unlock what signal it holds for us?” [...]

“Actually, I would count on a trio of dis-
tinct strata of classifications.

“First, you and I look at it casually and
think of it as just confusing poppycock, fool-
ish mumbo jumbo - noticing, though, that, as
a signal, it’s obviously not random or chaotic,
that it’s an affirmation of sorts, a product of
a codifying authority, submitting to a public
that’s willing to admit it. It’s a social tool as-
suring communication, promulgating it with-
out any violation, according it its canon, its
law, its rights.

“Who knows what it is? A bylaw? A
Koran? A court summons? A bailiff’s
logbook? A contract for purchasing land? An
invitation to a birthday party? A poll tax
form? A work of fiction? A crucial fact is
that, my work advancing, what I’ll find rising
in priority isn’t its initial point of application
but its ongoing articulation for, if you think
of it, communication (I might almost say
‘communion’) is ubiquitous, a signal coursing
from this individual to that, from so-and-so
to such-and-such, a two way traffic in an
idiom of transitivity or narrativity, fiction
or imagination, affabulation or approbation,
saga or song.”

Georges Perec, The Void (translated by
Gilbert Adair).

Contents

Foreword xvii

Preface xix

I Introduction and History of the Notation 1

1 Prologue 3

2 Utilitarian introduction to ASN.1 7

2.1 A diversity of machine architectures 8

2.2 A diversity of programming languages 10

2.3 Conversion programs . 11

2.4 The triad: concrete syntax, abstract syntax, transfer syn-
tax . 12

3 ASN.1 and the OSI Reference Model 17

3.1 The 7-layer OSI model 18

3.2 The Presentation layer 20

3.3 The Application layer . 24

3.4 The OSI model in the future 26

4 Your first steps with ASN.1 29

4.1 Informal description of the problem 30

4.2 How should we tackle the problem? 31

4.3 Ordering an item: from general to particular 32

4.4 Encoding and condition on distinct tags 35

4.5 Final module . 36

4.6 A client-server protocol 38

4.7 Communicating applications 40

iv CONTENTS

5 Basics of ASN.1 43
5.1 Some lexico-syntactic rules 44
5.2 Types . 45
5.3 Values . 48
5.4 Information object classes and information objects 49
5.5 Modules and specification 51

6 History 53
6.1 International Organization for Standardization (ISO) . . 54
6.2 International Telecommunications Union (ITU) 58
6.3 The great story of ASN.1 60

6.3.1 Birth . 60
6.3.2 Baptism . 61
6.3.3 The 1989 and 1990 editions 62
6.3.4 The 1994 edition 63
6.3.5 The 1997 edition 68

6.4 Compatibility between the 1990 and 1994/1997 versions . 72
6.4.1 Composition rules of the two versions 73
6.4.2 Migration from ASN.1:1990 to ASN.1:1997 73
6.4.3 Migration from ASN.1:1994 to ASN.1:1990 77

7 Protocols specified in ASN.1 79
7.1 High-level layers of the OSI model 80
7.2 X.400 electronic mail system 81
7.3 X.500 Directory . 83
7.4 Multimedia environments 84
7.5 The Internet . 86
7.6 Electronic Data Interchange Protocols (EDI) 88
7.7 Business and electronic transactions 89
7.8 Use in the context of other formal notations 89
7.9 Yet other application domains 91

II User’s Guide and Reference Manual 95

8 Introduction to the Reference Manual 97
8.1 Main principles . 97
8.2 Editorial conventions . 98
8.3 Lexical tokens in ASN.1 100

8.3.1 User’s Guide . 100
8.3.2 Reference Manual 100

CONTENTS v

9 Modules and assignments 105

9.1 Assignments . 106

9.1.1 User’s Guide . 106

9.1.2 Reference Manual 108

9.2 Module structure . 110

9.2.1 User’s Guide . 110

9.2.2 Reference Manual 113

9.3 Local and external references 117

9.3.1 User’s Guide . 117

9.3.2 Reference Manual 118

9.4 The semantic model of ASN.1 121

10 Basic types 127

10.1 The BOOLEAN type . 128

10.1.1 User’s Guide . 128

10.1.2 Reference Manual 128

10.2 The NULL type . 129

10.2.1 User’s Guide . 129

10.2.2 Reference Manual 130

10.3 The INTEGER type . 130

10.3.1 User’s Guide . 130

10.3.2 Reference Manual 133

10.4 The ENUMERATED type . 135

10.4.1 User’s Guide . 135

10.4.2 Reference Manual 139

10.5 The REAL type . 140

10.5.1 User’s Guide . 140

10.5.2 Reference Manual 143

10.6 The BIT STRING type . 145

10.6.1 User’s Guide . 145

10.6.2 Reference Manual 149

10.7 The OCTET STRING type 151

10.7.1 User’s Guide . 151

10.7.2 Reference Manual 152

10.8 The OBJECT IDENTIFIER type 153

10.8.1 User’s Guide . 154

10.8.2 Reference Manual 165

10.9 The RELATIVE-OID type 167

10.9.1 User’s Guide . 167

10.9.2 Reference Manual 169

vi CONTENTS

11 Character string types 171

11.1 General comments . 172

11.2 The NumericString type 174

11.3 The PrintableString type 176

11.4 The VisibleString and ISO646String types 176

11.5 The IA5String type . 177

11.6 The TeletexString and T61String types 179

11.7 The VideotexString type 180

11.8 The GraphicString type 181

11.9 The GeneralString type 182

11.10 The UniversalString type 183

11.10.1 User’s Guide . 183

11.10.2 Reference Manual 187

11.11 The BMPString type . 189

11.12 The UTF8String type . 190

11.13 Reference Manual . 192

11.14 Character string type compatibility 197

11.15 The ObjectDescriptor type 198

11.15.1 User’s Guide . 198

11.15.2 Reference Manual 199

11.16 The GeneralizedTime type 199

11.16.1 User’s Guide . 199

11.16.2 Reference Manual 200

11.17 The UTCTime type . 202

11.17.1 User’s Guide . 202

11.17.2 Reference Manual 202

12 Constructed types, tagging, extensibility rules 205

12.1 Tagging . 206

12.1.1 Tags and tagging classes 207

12.1.2 Tagging mode . 211

12.1.3 Global tagging mode 213

12.1.4 Reference Manual 216

12.2 The constructor SEQUENCE 218

12.2.1 User’s Guide . 218

12.2.2 Reference Manual 222

12.3 The constructor SET . 226

12.3.1 User’s Guide . 226

12.3.2 Reference Manual 227

CONTENTS vii

12.4 The constructor SEQUENCE OF 230

12.4.1 User’s Guide . 230

12.4.2 Reference Manual 232

12.5 The constructor SET OF 233

12.5.1 User’s Guide . 233

12.5.2 Reference Manual 233

12.6 The constructor CHOICE 235

12.6.1 User’s Guide . 235

12.6.2 Reference Manual 237

12.7 Selecting a CHOICE alternative 239

12.7.1 User’s Guide . 239

12.7.2 Reference Manual 240

12.8 The special case of the ANY type 241

12.8.1 User’s Guide . 241

12.8.2 Reference Manual 244

12.9 Type extensibility . 244

12.9.1 User’s Guide . 244

12.9.2 Reference Manual 253

13 Subtype constraints 257

13.1 Basics of subtyping . 258

13.1.1 User’s Guide . 258

13.1.2 Reference Manual 259

13.2 Single value constraint . 260

13.2.1 User’s Guide . 260

13.2.2 Reference Manual 261

13.3 Type inclusion constraint 261

13.3.1 User’s Guide . 261

13.3.2 Reference Manual 263

13.4 Value range constraint . 263

13.4.1 User’s Guide . 263

13.4.2 Reference Manual 265

13.5 Size constraint . 266

13.5.1 User’s Guide . 266

13.5.2 Reference Manual 267

13.6 Alphabet constraint . 268

13.6.1 User’s Guide . 268

13.6.2 Reference Manual 269

viii CONTENTS

13.7 Regular expression constraint 271

13.7.1 User’s Guide . 271

13.7.2 Reference Manual 273

13.8 Constraint on SEQUENCE OF or SET OF elements 275

13.8.1 User’s Guide . 275

13.8.2 Reference Manual 277

13.9 Constraints on SEQUENCE, SET or CHOICE components . . . 277

13.9.1 User’s Guide . 277

13.9.2 Reference Manual 281

13.10 Subtyping the content of an octet string 283

13.10.1 User’s Guide . 283

13.10.2 Reference Manual 284

13.11 Constraint combinations 285

13.11.1 User’s Guide . 285

13.11.2 Reference Manual 288

13.12 Constraint extensibility 291

13.12.1 User’s Guide . 291

13.12.2 Reference Manual 293

13.13 User-defined constraint 294

13.13.1 User’s Guide . 294

13.13.2 Reference Manual 296

14 Presentation context switching types 297

14.1 The EXTERNAL type . 298

14.1.1 User’s Guide . 298

14.1.2 Reference Manual 301

14.2 The EMBEDDED PDV type 302

14.2.1 User’s Guide . 302

14.2.2 Reference Manual 304

14.3 The CHARACTER STRING type 306

14.3.1 User’s Guide . 306

14.3.2 Reference Manual 307

15 Information object classes, objects and object sets 309

15.1 Introduction to information object classes 310

15.2 Default syntax of information objects and classes 312

15.2.1 User’s Guide . 312

15.2.2 Reference Manual 317

CONTENTS ix

15.3 User-friendly syntax . 323

15.3.1 User’s Guide . 323

15.3.2 Reference Manual 325

15.4 Example: the classes ATTRIBUTE and MATCHING-RULE of the
X.500 recommendation 327

15.5 Value sets and information object sets 329

15.5.1 User’s Guide . 329

15.5.2 Reference Manual 331

15.6 Accessing the information stored in objects and object sets336

15.6.1 User’s Guide . 336

15.6.2 Reference Manual 339

15.7 A simple case study of how to extract information mod-
eled by a class . 341

15.7.1 User’s Guide . 341

15.7.2 Reference Manual 347

15.8 More complex examples of information extraction 352

15.9 The pre-defined TYPE-IDENTIFIER class and INSTANCE OF

type . 355

15.9.1 User’s Guide . 356

15.9.2 Reference Manual 358

15.10 The pre-defined ABSTRACT-SYNTAX class 359

15.10.1 User’s Guide . 359

15.10.2 Reference Manual 362

16 Enough to read macros 363

16.1 Historical background . 364

16.2 Why macros? . 364

16.3 General syntax of a macro 365

16.4 First example: complex numbers 368

16.5 Second example: the macro OPERATION of ROSE 371

16.6 Main (and major!) disadvantages of macros 373

16.7 Macro substitutes since 1994 374

17 Parameterization 377

17.1 Basics of parameterization 377

17.2 Parameters and parameterized assignments 379

17.2.1 User’s Guide . 379

17.2.2 Reference Manual 384

17.3 Parameters of the abstract syntax 389

x CONTENTS

III Encoding Rules and Transfer Syntaxes 391

18 Basic Encoding Rules (BER) 393

18.1 Main principles . 394

18.2 Encoding of all types . 398

18.2.1 BOOLEAN value . 398

18.2.2 NULL value . 398

18.2.3 INTEGER value . 398

18.2.4 ENUMERATED value 399

18.2.5 REAL value . 400

18.2.6 BIT STRING value 402

18.2.7 OCTET STRING value 404

18.2.8 OBJECT IDENTIFIER value 404

18.2.9 RELATIVE-OID value 405

18.2.10 Character strings and dates 406

18.2.11 SEQUENCE value . 406

18.2.12 SET value . 407

18.2.13 SEQUENCE OF value 408

18.2.14 SET OF value . 408

18.2.15 CHOICE value . 408

18.2.16 Tagged value . 409

18.2.17 Subtype constraints 410

18.2.18 EXTERNAL value . 410

18.2.19 INSTANCE OF value 411

18.2.20 EMBEDDED PDV value 412

18.2.21 CHARACTER STRING value 412

18.2.22 Information objects and object sets, encoding of a
value of an open type 412

18.2.23 Value set . 413

18.3 Properties of the BER encoding rules 413

18.4 A complete example . 415

19 Canonical and Distinguished Encoding Rules (CER and
DER) 417

19.1 A need for more restrictive rules 418

19.2 Canonical Encoding Rules (CER) 422

19.3 Distinguished Encoding Rules (DER) 422

CONTENTS xi

20 Packed Encoding Rules (PER) 425

20.1 Main principles of PER 426

20.2 The four variants of encoding 428

20.3 PER-visible subtype constraints 429

20.4 Encodings of a whole number 435

20.5 Length field encoding . 438

20.6 Encoding of all types . 440

20.6.1 BOOLEAN value . 440

20.6.2 NULL value . 440

20.6.3 INTEGER value . 440

20.6.4 ENUMERATED value 441

20.6.5 REAL value . 441

20.6.6 BIT STRING value 442

20.6.7 OCTET STRING value 442

20.6.8 OBJECT IDENTIFIER value 443

20.6.9 RELATIVE-OID value 443

20.6.10 Character strings and dates 443

20.6.11 Open type value 445

20.6.12 SEQUENCE value . 446

20.6.13 SET value . 447

20.6.14 SEQUENCE OF value 448

20.6.15 SET OF value . 448

20.6.16 CHOICE value . 448

20.6.17 Tagged type value 449

20.6.18 EXTERNAL value . 449

20.6.19 INSTANCE OF value 449

20.6.20 EMBEDDED PDV or CHARACTER STRING values 449

20.6.21 Value set . 450

20.6.22 Information objects and information object sets . . 450

20.7 A complete example . 451

21 Other encoding rules 453

21.1 Light Weight Encoding Rules (LWER) 454

21.2 BACnet encoding rules 455

21.3 Octet Encoding Rules (OER) 456

21.4 Signalling specific Encoding Rules (SER) 457

21.5 XML Encoding Rules (XER) 458

21.6 Encoding control . 459

xii CONTENTS

IV ASN.1 Applications 461

22 Tools 463
22.1 What is an ASN.1 compiler? 463
22.2 Notes on compiler usage 467
22.3 Parsing ASN.1: a troublesome problem 469
22.4 Other tools . 470

23 ASN.1 and the formal languages SDL, TTCN, GDMO 475
23.1 The formal specification language SDL 476
23.2 The TTCN language for test suites 480
23.3 The GDMO notation for network management 482

24 Other abstract syntax notations 487
24.1 Sun Microsystems’ XDR notation 488
24.2 Apollo Computer’s NIDL notation 490
24.3 OMG IDL language for CORBA 490
24.4 RFC 822 notation for the Internet 492
24.5 EDIFACT notation . 492

25 Epilogue 495

V Appendices 497

A Encoding/decoding simulations 499

B Combined use of ASN.1 and SDL 509

Abbreviations 515

Bibliography 521

Index 543

List of Figures

1 Reading directions . xxi

1.1 The three organs represented by ‘Visible Speech’ 4

2.1 Battle between big Endians and little Endians! 9

2.2 Data structure in two computing languages 10

2.3 Two types of communications 12

2.4 An example of syntax triad 15

3.1 7-layer OSI model . 18

3.2 Presentation context negotiation 22

4.1 Data exchange between two systems 39

6.1 ISO breakdown structure 55

6.2 Partial description of JTC 1 structure 56

7.1 Structure of an X.400 message 82

7.2 An extract of ASN.1 for an X.400 message 83

7.3 Two information object classes defined in the X.500 di-
rectory . 85

10.1 Linked list . 130

10.2 Data exchange between two systems whose specification
versions are different . 137

10.3 Block of check boxes . 146

10.4 Top of the ISO registration tree 161

11.1 An example of a Videotex terminal: the French Minitelr 181

12.1 Interworking using extensibility 247

xiv LIST OF FIGURES

12.2 An example of relay between different extensions of the
same specification . 250

13.1 Metacharacters for regular expressions 272
13.2 Metacharacters for regular expressions (continued) 273
13.3 Set operators . 286

14.1 SEQUENCE type associated with the EXTERNAL type 301
14.2 Abstract and transfer syntax identifiers hand-over when

relaying an embedded value 302
14.3 SEQUENCE type associated with the EMBEDDED PDV type . . . 305
14.4 SEQUENCE type associated with the CHARACTER STRING type 307

15.1 Description form of a remote application 311
15.2 Object set representation matrix 330
15.3 Double projection mechanism of two component relation

constraints . 355

18.1 BER transfer syntax (TLV format) 395
18.2 The two formats of the tag octets (T) 396
18.3 The three formats of the length octets (L) 396
18.4 Two’s-complement for integers 399
18.5 The encoding forms of a REAL value 401

19.1 Relay of a message and its digital signature 418

20.1 Recursive formats of the PER transfer syntax 428
20.2 Encoding principle of a constrained whole number 436

22.1 Four usual stages of a compilation process 464
22.2 Modus operandi of an ASN.1 (to C) compiler 465

23.1 SDL interconnection diagram for an elevator 479
23.2 A TTCN table . 481
23.3 Extract of the GDMO specification for supervising a cof-

fee machine . 483

24.1 A diagram of EDIFACT message 493

List of Tables

5.1 Basic types . 46

5.2 Constructed types . 46

9.1 Syntactical ambiguities in left parts of assignments 108

10.1 Comparison between the BER and PER encodings of an
enumeration and a choice of NULL types 138

10.2 Encoding length of a 6-bit string (’111111’B) 149

11.1 The alphabets of the character string types 175

11.2 The IA5String alphabet 178

11.3 UTF-8 encoding bit distribution for the Basic Multilin-
gual Plane . 191

12.1 Tags of class UNIVERSAL . 209

15.1 The seven categories of fields of an information object class314

15.2 Information extraction from objects and object sets 338

16.1 Syntactic entities used in macro definitions 366

16.2 Syntactic entities used in macro definitions (continued) . . 367

17.1 The different categories of parameters and governors . . . 380

18.1 Decoding of the first octets of an object identifier 405

18.2 Correspondence between abstract syntax and transfer syn-
tax for the EXTERNAL type 410

19.1 CER and DER restrictions on BER 420

19.2 CER and DER restrictions on BER (continued) 421

20.1 Comparison of encoding size between BER and PER . . . 427

xvi LIST OF TABLES

20.2 PER-visible constraints 433
20.3 Minimal and maximal encoding values for characters of

known-multiplier character string types 444

Foreword

Abstract Syntax Notation One (ASN.1) is a notation that is used in de-
scribing messages to be exchanged between communicating application
programs. It provides a high level description of messages that frees
protocol designers from having to focus on the bits and bytes layout
of messages. Initially used to describe email messages within the Open
Systems Interconnection protocols, ASN.1 has since been adopted for
use by a wide range of other applications, such as in network manage-
ment, secure email, cellular telephony, air traffic control, and voice and
video over the Internet.

Closely associated with ASN.1 are sets of standardized encoding rules
that describe the bits and bytes layout of messages as they are in transit
between communicating application programs. Neither ASN.1 nor its
encoding rules are tied to any particular computer architecture, operat-
ing system, language or application program structure, and are used in
a range of programming languages, including Java, C++, C or COBOL.

The formal standards documents on ASN.1 and its encoding rules are
published by the International Telecommunications Union-Telecommuni-
cations Sector (ITU-T), by the International Organization for Stan-
dardization (ISO) and by the International Electrotechnical Commission
(IEC). Though the standards are very thorough and precise in their def-
initions, they are not easy to read.

The purpose of this book is to explain ASN.1 and its encoding rules
in easy to understand terms. It addresses the subject at both an in-
troductory level that is suitable for beginners, and at a more detailed
level that is meant for those who seek a deeper understanding of ASN.1
and the encoding rules. Application protocol designers who need a solid
understanding of ASN.1, and computer programmers who desire a clear
and full understanding of the standardized encoding rules of ASN.1, will
benefit from reading this book.

xviii ASN.1 – Communication between Heterogeneous Systems

Olivier Dubuisson has done a very good job of describing ASN.1 and
its encoding rules in this book. Starting with his overview of ASN.1,
to his detailing of ASN.1 and its encoding rules, and finishing with his
description of ways in which ASN.1 is today used in industry, he provides
clear examples to help the reader better grasp what is being said. The
material is presented in a form that will prove enlightening for technical
managers who seek a general understanding of ASN.1, standard writers
who wish to know ASN.1 in detail but without having to concentrate
much on the encoding rules, as well as those implementers who may
need to know the details of both ASN.1 and its encoding rules.

Olivier is a member of the ISO/IEC ASN.1 committee and is known
for his deep theoretical and practical understanding of ASN.1 and its
encoding rules. His focus on clarity of both ASN.1 concepts and the
text used to describe them has proved very valuable.

Olivier has certainly accomplished his objective of providing a thor-
ough yet clear description of ASN.1 and its encoding rules. The pages
that follow contain the ins and outs of the ASN.1 standard and the
encoding rules, and you will find that they are presented in an easy-to-
understand and friendly manner. Readers will no doubt be delighted at
having their desire for a fuller understanding of ASN.1 fulfilled and their
questions answered by the material on the following pages.

Bancroft Scott
President, OSS Nokalva

Editor, ITU-T | ISO/IEC Joint ASN.1
and Encoding Rules Standards

Somerset, New Jersey, 23 Feb. 1999

mailto:baos@oss.com
http://www.oss.com

Preface

Par excellence, ASN.1 (Abstract Syntax Notation One) is a formal no-
tation that allows specifications of information handled by high level
telecom protocols with no loss of generality, regardless of software or
hardware systems.

Since its first standardization in 1984, ASN.1 has widened its scope
out of Open System Interconnection (OSI) and benefited from numerous
improvements, particularly in its 1994 release in which substantial func-
tionalities related to telecommunication technological changes (high rate
data transfer, multimedia environment, alphabets of developing coun-
tries, service protocol frequent updating, etc) were added.

In addition, more and more computing tools are available to make
ASN.1 easier to handle. Finally, several standardized sets of encoding
rules can be used for describing how these potentially complex data
should be transmitted as bit or byte streams while keeping the way they
are transparent to the specifier.

For those who deal with data transfer, whether simple or very com-
plex, ASN.1 is a pre-eminent notation. However, little literature and no
book encompass ASN.1 as a whole: from its semantics to its encapsu-
lation in other languages (SDL, TTCN or GDMO) including encoding
and its related tools.

Having taught ASN.1 in industrial courses at France Télécom R&D
(the research & development centre of France Télécom, which was named
“Cnet” at that time) and done my best to answer numerous questions
from my insatiable colleagues on the subject for some years, convinced
me that there was indeed material for a book. I have tried to consider
several levels for reading, from the neophyte1 without any concept of
data transfer up to the expert. These reading directions are given in
Figure 1 on page xxi, but the reader should not feel restricted in any

1The neophyte can discard the numerous footnotes of this book in the first reading.

xx ASN.1 – Communication between Heterogeneous Systems

way by them, and no doubt the specifier who is already familiar with
ASN.1 and simply wants to look up a specific notion will go directly to
the corresponding section: this book includes numerous cross references
in order to guide readers more quickly to related notions and to help
them build up their own way of reading.

For merely technical books are hardly ever entertaining, I endeav-
oured a few digressions that, hopefully, a rigorous reader will not hold
against me!

Contents

This book is divided into four parts. The first is called ‘Introduction and
History of the Notation’. It starts with a metaphore about the ‘amaz-
ing story of telecommunications’ and proceeds with an introduction to
general principles of data transfer and ASN.1 benefits. This chapter is
dedicated to the reader who is not acquainted with this area.

Chapter 3 places ASN.1 in the historical context of OSI, and more
specifically how it relates to the layers 6 and 7 (Presentation and Ap-
plication). By means of a tutorial, Chapter 4 presents a real-world data
transfer specification of a mail order company. Chapter 5 introduces
the main concepts of ASN.1 along with examples (types, abstract val-
ues, modules, information object classes and information objects) to
lead more smoothly to Chapter 6, which traces the outline of ASN.1
historical background and describes the different standardized versions.
Finally, Chapter 7 presents various application domains of ASN.1.

Readers who would simply be looking for an overview of ASN.1 and
its main advantages may, in the first place at least, focus on this first
part, which is independent from the rest of the book.

The second part, titled ‘User’s Guide and Reference Manual’, makes
up the core of the book, since it describes full ASN.1 syntax and seman-
tics. Chapter 8 provides an introduction to the reference manual, which
contains nine chapters. Those are arranged by increasing difficulty level.
Unfortunately from a pedagogical viewpoint, it is impossible to separate
ASN.1 into fully independent sections. The sub-sections called ‘User’s
Guide’ are aimed at the beginners who may leave the ‘Reference Manual’
to subsequent readings.

The third part, ‘Encoding Rules And Transfer Syntaxes’, includes
three chapters that describe the four standardized transfer syntaxes as-
sociated with ASN.1. The following chapter focuses on other sets of

Preface xxi

Part I • Introduction and History of the Notation •
1 Prologue

2 Utilitarian introduction to ASN.1

3 ASN.1 and the OSI Reference Model

4 Your first steps with ASN.1

5 Basics of ASN.1

6 History

7 Protocols specified in ASN.1

Part II • User’s Guide and Reference Manual •
8 Introduction to the Reference Manual

9 Modules and assignments

10 Basic types

11 Character string types

12 Constructed types, tagging, extensibility rules

13 Subtype constraints

14 Presentation context switching types

15 Information object classes, objects and object sets

16 Enough to read macros

17 Parameterization

Part III • Encoding Rules and Transfer Syntaxes •
18 Basic encoding rules (BER)

19 Canonical and distinguished encoding rules (CER and DER)

20 Packed encoding rules (PER)

21 Other encoding rules

Part IV • ASN.1 Applications •
22 Tools

23 ASN.1 and the formal languages SDL, TTCN, GDMO

24 Other abstract syntax notations

25 Epilogue

Discovery itinerary (the main principles)

Beginning specifier’s itinerary

Advanced itinerary (additions since 1994)

Figure 1: Reading directions

xxii ASN.1 – Communication between Heterogeneous Systems

encoding rules that may be applied to an ASN.1 abstract syntax. This
part can be set aside by specifiers, who need not, in general, be concerned
with the way data described in ASN.1 are transmitted.

The fourth part takes a more applied perspective. Chapter 22 shows
what is meant by ‘ASN.1 compiler’ and tackles the problems that are
come up against when dealing with the automatic treatments of spec-
ifications. Chapter 23 introduces the use of ASN.1 in the context of
other formal languages, such as SDL for formalizing telecommunication
protocols, TTCN for testing these protocols and GDMO for network
management. Finally, Chapter 24 presents other abstract syntax nota-
tions and compares them with ASN.1.

All the abbreviations used in this book are summarized from page 515
onwards. An index of the various concepts, keywords and names of the
grammar elements is on page 543.

Considering the number of chapters and the potential variety of read-
ers, we suggest several guidelines for reading this text in Figure 1 on
page xxi.

Contacts

On the Web, discussions about ASN.1 can be found on the
asn1@oss.com mailing-list. Unrelated to the compiler developed by

OSS Nokalva2, this list is very reactive and of a high technical level; it
gathers all the international experts on ASN.1 and reaches around 250
subscribers. To subscribe, send an e-mail to asn1-request@oss.com with
‘subscribe asn1 your-name ’ in the body of the message.

Readers who may wish to contact me or ask me questions can
send e-mail to asn1@rd.francetelecom.fr or surf to the web site

http://asn1.elibel.tm.fr associated with this book.

This text is very unlikely to be error-free and the ASN.1 standard
is not frozen. All comments are welcome (please note the section, page
and line number in fault); they will be collected on a special web page3

on our site and I shall maintain a mailing list4 of the readers who want
to be informed of the corrections together with the latest news of the
site. Finally, for the careful readers who would wish further detail, the
text provides numerous URLs. As their life may happen to be dreadfully

2http://www.oss.com
3http://asn1.elibel.tm.fr/en/book/errata/
4http://asn1.elibel.tm.fr/en/news/

asn1@oss.com
mailto:asn1@oss.com
asn1-request@oss.com
asn1@rd.francetelecom.fr
mailto:asn1@rd.francetelecom.fr
http://asn1.elibel.tm.fr
http://www.oss.com
http://asn1.elibel.tm.fr/en/book/errata/
http://asn1.elibel.tm.fr/en/news/

Preface xxiii

and unfortunately short as everyone knows, these will be updated on our
web site5 too.

Happy reading!

Acknowledgements

I am very much indebted to Bancroft Scott, ISO and ITU-T editor of the
ASN.1 standards, for the technical quality of this book. Bancroft has
always answered precisely and promptly the numerous questions I ask
him (note the tense) almost daily. He strongly supported the project,
and I thank him warmly for that. He is somehow one of the two living
memories of ASN.1.

John Larmouth, ISO rapporteur for ASN.1, is its second memory,
something everybody should be convinced of when reading his book
[Lar99]. His historical viewpoints on aspects too old for me (no offense
meant!) have been of great help. John is a first-rate contributor on
the standard and I hope our readers will find complementarity in our
respective books.

A few years ago, when he was still a student and about to move
to England for his studies, Philippe Fouquart worked with me on
ASN.1:1994 grammar. It has been a pleasant surprise to see him back,
now as a colleague at France Télécom. He promptly agreed to translate
this book into English and I’m content to see how precisely, but also how
easily, he managed to put across the very ideas which I meant to em-
phasize. His suggestions also provided improvements to the original text
(which, hopefully, the French-speaking readers will benefit from in an-
other edition). I must pay tribute to him for the remarkable quality of his
work.Philippe has also seen to compiling the original LATEX source files
into a PDF that could claim the name, fixing up fonts, cross-references
and index bugs: thanks for cutting the Gordian knot!

Michel Mauny is a friend I have been able to count on since my early
struggles with ASN.1. His continuous support, his thoughtful advice,
his open-mindness and his serene attitude have been of invaluable help
to me. It has been my pleasure to work with him.

I gratefully aknowledge the help and support of Rodolphe Pueyo. I
would like to thank him for providing me with thoughtful criticism and
advice while reviewing this book. I’m proud of supervising Rodolphe’s
PhD thesis on ASN.1.

5http://asn1.elibel.tm.fr/en/book/links/

http://asn1.elibel.tm.fr/en/book/links/

xxiv ASN.1 – Communication between Heterogeneous Systems

The web site6 associated with this book is dedicated to Philippe
Fouquart, Frédéric Duwez, Guillaume Latu, Pierre-Marie Hétault,
Yoann Regardin, Stéphane Levant and Guillaume Moraine, who
throughout their placements at France Télécom R&D, always worked
enthusiastically, with energy and proficiency on the development of orig-
inal tools, some of which are available on this site.

These tools would not have seen the light without Christian
Rinderknecht’s trail-blazing work on ASN.1 parsing. I have always ap-
preciated his Cartesian approach of ASN.1 grammar and semantics. His
theoretical and applied results are the foundation of our developments.

This book could not have been written without the support of Roland
Groz and Pierre-Noël Favennec who encouraged me in giving concrete
expression to my project.

I am grateful to Anne-Marie Bustos’s contribution, with whom I had
the pleasure to give courses on ASN.1 at France Télécom R&D. The ‘first
steps’ in Chapter 4 are very much inspired by one of the tutorials she
gave.

I am particularly grateful to a number of people for carefully review-
ing draft material of this book: Bruno Chatras, Jeannie Delisser, Fab-
rice Dubois, John Ehasz, Roland Groz, Pierre-Marie Hétault, Jean-Paul
Lemaire (who also provided some examples and good advice), Sergey
Markarenko, Guy Martin, Rodolphe Pueyo, Yoann Regardin, Christian
Rinderknecht, Bancroft Scott, Conrad Sigona, Paul Thorpe and Daniel
Vincent.

I should like to also extend my thanks to the librarian assistants
at France Télécom R&D and to Arnaud Diquelou at AFNOR for their
invaluable help during my biographical roving.

Olivier Dubuisson
Perros-Guirec, France

February 1999

Translator’s notes

Though an absolute beginner in the area, there was not much hesita-
tion to go in for Olivier’s offer of translating his book from French into
English, even if tackling quotes from Moliere’s or Flaubert’s seemed a
bit daunting for an amateur at first. For this, I ought to apologize in

6http://asn1.elibel.tm.fr/

http://asn1.elibel.tm.fr/

Preface xxv

advance to the well-read purists who would be offended by such careless
attention... Generally speaking, because this translation is not specifi-
cally aimed at native English speakers, we have tried to keep the phras-
ing as simple as possible in so far as talking about ASN.1 can be made
simple! The American spelling, typography and syntax, which appear
throughout the text, have been used for editorial purposes.

This translation is meant to be consistent with the standard docu-
ments. Whenever, for clarity’s sake, the vocabulary has to differ from the
standard terms, the correspondence is annoted, generally by means of
footnotes. To contribute to the added value of this book to the standard
documents, we deliberately used this variety to put across the concepts
rather than the vocabulary employed to describe them since focusing
on words rather than ideas is sometimes the weak spot of the standard
texts. We found that such a variety would be of valuable help as long
as it would remain unambiguous: rephrasing proves to be a good way
to learn. In the Reference Manual, which is more closely related to the
standard documents, the standard terms have been preferred.

Since the English language can prove ambiguous on a par with ASN.1
semantics, a few comments on terminology may not be superfluous: we
shall denote by round brackets the characters “(” and “)” also called
parentheses. We call square brackets the characters “[” and “]”, some-
times denoted by the shorthand (and deceptive!) ‘bracket’ in the liter-
ature. And finally we shall write curly brackets for the characters “{”
and “}” also denoted by ‘braces’ elsewhere. This choice was motivated
not only by the fact that these are the terms we usually use (!) but also
and mainly because we found that their visual-sounding nature would be
much helpful for the non-native English speaking readers among whom
we can be counted.

After much hesitation about the structure to be given to the semantic
rules, we went for the modal ‘must’ instead of the more formal ITU-T-
like ‘shall’7. We hope that the readers who are already familiar with
this style will not find it too confusing.

Since English has been more ‘an acquired taste than an innate gift’
for me, people who influenced this text in one way or another would be

7Note, however, that strictly speaking, an ITU-T standard is no more than a
‘Recommendation’ after all, namely “a suggestion that something is good or suitable
for a particular purpose”. The layman may legitimately wonder whether finding
‘shall’ instead of ‘should’ in a recommendation could not constitute a contradiction
in terms...

xxvi ASN.1 – Communication between Heterogeneous Systems

too numerous to mention here; they know who they are (some of them
may at least!). Thanks to: Margaret, John and Savash for a few tips,
the Association Georges Perec for the translated material (I’m not quite
there yet...) and the reviewers on both sides of the Atlantic. Last but
definitely not least, many thanks to Olivier for his continuous support
and insightful explanations throughout the translation process.

Philippe Fouquart
Paris, France
October 1999

Part I

Introduction and History
of the Notation

Chapter 1

Prologue

“Mr. Watson, come here; I need you!”

Alexander G. Bell, 10 March 1876.

Melville Bell, teacher of elocution at the University of Edinburgh ac-
quired a worldwide reputation not only as an expert on correct pronun-
ciation but also as the inventor of ‘Visible Speech’ [Bel67], a written
code1 providing a universal alphabet — some may say an abstract no-
tation —, describing the precise positions and the respective actions of
the tongue, the throat and the lips while speaking (see Figure 1.1 on
the following page). This code published in 1867 [Bel67] was initially
meant to make foreign languages — the abstract syntaxes — pronunci-
ation easier since it provided a way to link one language to another. It
finally proved more useful for teaching diction to deaf people.

In 1862, 15-year-old Alexander Graham, Melville Bell’s son2, uttered
strange sounds that his father had written in ‘Visible Speech’ while he
was out of the room — using the speech basic encoding rules, Alexander
associated a transfer syntax with the abstract syntax his father specified.

A year later, Alexander and his older brother Melly built a talking
machine out of a fake skull of gutta-percha filled with cans, rubber, and
a lamb’s larynx to make up the vocal parts. They then blew through it,
making it cry out “Ma-Ma!”.

1The set of characters can be found at http://www.indigo.ie/egt/standards/csur/
visible-speech.html.

2A short story of Graham Bell and some photos are available at:
http://www.garfield.k12.ut.us/PHS/History/US/1877/inv/alex/default.html.

http://www.indigo.ie/egt/standards/csur/
http://www.indigo.ie/egt/standards/csur/visible-speech.html
visible-speech.html
http://www.indigo.ie/egt/standards/csur/visible-speech.html
http://www.garfield.k12.ut.us/PHS/History/US/1877/inv/alex/default.html

4 ASN.1 – Communication between Heterogeneous Systems

Figure 1.1: The three organs represented by ‘Visible Speech’: the
lips (Fig. 2), the tongue (Fig. 3) and the throat (Fig. 4)

1 - Prologue 5

During the following years, Alexander helped his father teach the
‘Visible Speech’ code, particularly at institutes for deaf people, but he
also took to studying vocal physiology. This work incited him to investi-
gate ways to reproduce vocal sounds so that these could be transmitted
electronically.

Alexander built up devices in which a first series of blades — the
encoder — vibrated in resonance with basic sounds emitted by speech;
these emitting blades drew to resonance a second series of blades using
an electromagnet — the decoder. In fact, this work was more related to
experiments of transmitting sounds both ways on a single line using a
‘harmonical’ system.

In 1874, Alexander invented the ‘phonautograph’3 — another kind
of receivor — a device that could transcribe sounds into concrete signs:
when words were pronounced, the ear membrane of a dead person vi-
brated and moved a lever on a tinted glass.

In July 1874, as Alexander wondered whether such a membrane could
produce an electrical current whith an intensity that would vary accord-
ing to the sound waves, he drew out the basics of the telephone in
principle. It was patented in March 1876 at the U.S. Patent Office un-
der the reference 174,465; it was modestly entitled “Improvements in
Telegraphy” [Bro76].

On the 10th of March 1876, after several unconclusive attempts,
Alexander uttered in his device the historical words, “Mr. Watson, come
here; I need you!”, which were heard by his workmate Thomas A. Watson
in the receiver located in a distant room and set up the first phone
conversation ever in history.

That is how the development of an abstract syntax notation brought
about this amazing invention that changed the world...

3http://jefferson.village.virginia.edu/∼meg3c/id/albell/ear.2.html

http://jefferson.village.virginia.edu/~meg3c/id/albell/ear.2.html

6 ASN.1 – Communication between Heterogeneous Systems

Before we leave this historical prologue and plunge into the core of
the matter, we suggest the reader to stop off at this stage for a while,
and ponder over this allegory of communications between heterogeneous
systems...

Chapter 2

Utilitarian introduction to
ASN.1

Contents

2.1 A diversity of machine architectures 8

2.2 A diversity of programming languages 10

2.3 Conversion programs . 11

2.4 The triad: concrete syntax, abstract syntax, transfer
syntax . 12

‘Just to give you a general idea’, he
would explain to them. For of course some
sort of general idea they must have, if they
were to do their work intelligently – though
as little of one, if they were to be good
and happy members of society, as possible.
For particulars, as every one knows, make
for virtue and happiness; generalities are
intellectually necessary evils. [...]

‘I shall begin at the beginning’, said
the D.H.C., and the more zealous students
recorded his intention in their note-books:
Begin at the beginning.

Aldous Huxley, Brave New World.

Adopting an approach somewhat inspired by maieutics, we propose to
draw out the reasons that lead to the definition of a notation such as

8 ASN.1 – Communication between Heterogeneous Systems

ASN.1. This chapter requires no prior knowledge of the 7-layer OSI
model (the way ASN.1 finds its place in this model is described in the
next chapter); a few notions about programming languages’ grammars
may prove useful for the first part.

This chapter introduces the underlying concepts and fundamental
principles of ASN.1 used, sometimes implicitly, throughout this book.
The main concepts of the notation are thoroughly described in Chap-
ter 5.

2.1 A diversity of machine architectures

History has proved that data information is crucial, especially for cul-
tural exchanges at first and then for developing an international econ-
omy. And more and more computing applications of all kinds are ex-
changing ever more complex data. Only think about banking exchange
applications or airlines that have to manage bookings, staffs, routes,
planes, maintenance, etc. or even mail order companies, which need to
transfer data from their headquarters to their store houses, to make out
the tremendous complexity of the data structures involved.

Contrary to common belief, these exchanges, though initially sped
up by information technologies and then reinforced by the increase of
telecommunication networks, have not simplified their structures. In-
deed, networks and computers constitute a more and more heteroge-
neous world: computers can have different internal representation modes
for the data they store. For example, a great majority uses the ASCII
encoding1, but some mainframes, such as IBM’s, handle EBCDIC en-
coding. Most of PCs use 16 or 32-bit memory-word in two’s complement
arithmetic but some mainframes, sailing out of the mainstream, use 60-
bit word in one’s complement arithmetic for instance.

A much more insiduous difference is the following: x86 Intel chips,
for example, order the bits of a byte from right to left whereas Motorola
does just the opposite. It makes Danny Cohen [Coh81]2 call Intel a ‘little

1Neither ASCII nor EBCDIC alphabets nor one’s nor two’s complement will be
described here. They are used only for the sake of illustration. These notions are not
necessary for understanding this chapter and can be found in [Tan96] for example.

2It is worthwhile noticing that this article brings us back to 1981, that is, before
the creation of ASN.1 (see Section 6.3 on page 60). Incidentally, it ends with the
visionary sentence: “Agreement upon an order [of bits] is more important than the
order agreed upon”. Isn’t ASN.1 this final agreement, after all?

2 - Utilitarian introduction to ASN.1 9

The Annotated Gulliver’s Travels
Illustration by Willy Pogßny (1919) ; Isaac Asimov Editor

Clarkson N. Potter, Inc., New York (1980)

(courtesy of Random House, Inc.)

Figure 2.1: Battle between big Endians and little Endians!

Endian’ (the number 0 low-weighted byte is on the right-hand side) and
Motorola a ‘big Endian’3, referring to theological arguments between
Catholics and Protestants in Swift’s Gulliver’s Travels as to whether
boiled eggs should be broken at the top or the bottom! (See Figure 2.1.)
This question does not come up only for eggs: [Tan96] mentions the
case of an unfortunate ‘stegosaurus’ that once transferred from a ‘little
Endian’ to a ‘big Endian’ machine, ended up with an exotic name and
a length of 167,772 meters!

To prevent the ‘big Endians’ manufacturers (or the ‘little Endians’
manufacturers if you are on the ‘big Endians’ side’) from being ban-
ished to remote Blefuscu Island4 where communicating with the ‘little
Endians’ is no longer possible, the latter would have to adopt the for-
mer’s convention. But we know that, in order to avoid any compatibility
malfunctions in their own products or even to preserve their position of
hegemony in the market, few manufacturers would be inclined to sign
such an armistice. And it is highly unlikely — some of the latter will
definitely not regret it! — that one day some standard would define once
for all an international internal data representation mode...

3Another example: the IP protocol is big Endian, the VAX computers are little
Endians.

4In Swift’s book, Blefuscu stands in for Louis XIV’s ‘so very Catholic France’ !

10 ASN.1 – Communication between Heterogeneous Systems

typedef struct Record {
char name[31];

int age;

enum { unknown=0;

male=1;

female=2 } gender;

} Record;

(a) C code

type record = {
name : string;

age : num;

gender : t gender }
and t gender = Unknown

| Male

| Female

(b) Objective Caml code

Figure 2.2: Data structure in two computing languages

2.2 A diversity of programming languages

This heterogeneousness of machine architectures goes along with a great
diversity in programming languages. For example, some data may be
represented by an array of integers in one language and by a list of
integers in another. Besides, a language may use its own representation
in the internal memory: in C language, for instance, the ‘\0’ character
is added at the end of a string and programmers are free for their own
defined boolean values because none exists by default.

For example, a data structure including a name declared as a 30-
character string, a positive integer for the age, and the gender (male,
female or unknown) may be represented as in Figure 2.2, in two very
different ways in C and Objective Caml5.

Note in particular that:

• the field name ends with a NULL byte in C but not in Objective
Caml ;

• the name field size is not limited in Objective Caml ;

• nothing is known about the internal representation of age (one’s
or two’s complement?...);

• the default values (provided they exist) of the enumerated type
variables are unknown in Objective Caml.

5Objective Caml is a language of the ML family; it can be downloaded from
http://caml.inria.fr.

http://caml.inria.fr

2 - Utilitarian introduction to ASN.1 11

These remarks bring up the following questions:

• do we have to keep the terminating null byte when transferring
data? Does the C program have to skip out these values? Or is it
up to the Objective Caml program to add it before transferring?

• How can we transfer the gender of a person without one of the
three identifiers as a string (which can be arbitraly long) while
keeping the ‘semantics’ (that is, the common acceptance of the
identifier)?

The reader should now be convinced of the necessity of a transfer
notation together with the need of conversion programs to and from this
notation.

2.3 Conversion programs

Bearing in mind the variety of internal data representations we have just
described, how does one make n machines ‘converse’?

We could decide, as in Figure 2.3(a) on the following page, that every
machine knows the internal data representation of its (n−1) neighbors so
that the data formats is agreed to be the receiver’s or sender’s6. Should
the dialog take place both ways, this would require n(n− 1) conversion
programs. This kind of communication has the undeniable advantage of
translating data only once during the transfer. Although it could have
been a decisive argument when processing time was a limiting factor, it
is no longer relevant for today’s data transfer.

We could also make up a common transfer format that would need
to be agreed upon among different machines (or even better, standard-
ized at an international level...). From Figure 2.3(b) on the following
page it follows that n encoders and n decoders (2n conversion programs
altogether) would be needed, which is obviously smaller than n(n − 1)
when n, the number of machines, is greater than 3.

In addition, if these 2n programs could be automatically generated,
a significant gain would be obtained in terms of efficiency (no specific
development) and reliability (no possible misinterpretation during the
encoder/decoder implementation).

6The NIDL notation from Apollo Computer, which is described in Section 24.2 on
page 490, is a good example of symmetrical communication.

12 ASN.1 – Communication between Heterogeneous Systems

(a) symmetrical

ASN.1

(b) asymmetrical

Figure 2.3: Two types of communications

2.4 The triad: concrete syntax, abstract syn-
tax, transfer syntax

Now that the problematics has been set out, let us draw up a synthesis
and introduce some definitions.

We call concrete syntax, the representation, in a given programming
language, of the data structures to be transferred. It is a ‘syntax’ be-
cause it respects the lexical and grammatical rules of a language (C for
instance); it is called concrete because it is actually handled by appli-
cations (implemented in this very language) and it complies with the
machine architectures’ restrictions. Two examples of concrete syntaxes
have been given in Figure 2.2 on page 10.

In order to break free of the diversity of concrete syntaxes men-
tioned above, the data structures to be transmitted should be described
regardless of the programming languages used. This description should
also respect the lexical and grammatical rules of a certain language
(guess which language) but should remain independent from program-
ming languages and never be directly implemented on a machine. For
these reasons, we call abstract syntax such a description and Abstract
Syntax Notation or ASN 7 the language whereby this abstract syntax is
denoted.

7The meaning of 1 in ASN.1 is given in Chapter 6.

2 - Utilitarian introduction to ASN.1 13

Though independent from programming languages, the abstract syn-
tax notation should be at least as powerful as any language’s datatype8

formalism, that is, a recursive notation that allows building complex
data types from basic types (equivalent to the string, int, enum... C
types for instance) and type constructors (equivalent to struct, union...
in C).

Many different messages can be exchanged between applications.
The abstract syntax would then describe in a more condensed way the
whole set of these messages. For this, the abstract syntax is defined by
means of a grammar that data to be transferred should respect. Other-
wise said, one should bear in mind the two levels of grammars [ASU86]:
first, the grammar of the ‘ASN’ abstract syntax notation itself; second,
the abstract syntax, which is also a grammar9 and is defined using the
former.

This abstract syntax notation must be formal to prevent all ambigui-
ties when being interpreted and handled by computing tools as described
at the end of this chapter. Drawing a parallel with language theory, the
abstract syntax notation can be seen as a BNF (or Backus-Naur Form)
that allows one to write specific grammars, which are called abstract
syntaxes in a data transfer context. In a nutshell, ASN.1 is not an ab-
stract syntax10 but a language to describe them.

Referring now to a more general concept of ‘circulation of immaterial
streams’, it is only the material component of a piece of information that
is involved in the communication. It is not the sense that is conveyed
but its material representation which, in essence, is of a physical nature.
In other words, the form is conveyed but not the content. It is only
when this representation arrives on the receiver’s side that it takes on
its full meaning.

For the same reason, the abstract syntax defines precisely the data
structure but says nothing about the associated semantics, viz., the
interpretation of these data by the application (thus by its programmer):
what meaning should we associate with a TRUE boolean value? What

8We should stress on the word datatype because an ASN.1 specification is only a
static description of the data; it cannot describe the operations to be applied to these
data.

9The language defined by this second grammar is the set of all the values that can
be transferred.

10This a very common (though harmless) confusion made by ASN.1 users.

14 ASN.1 – Communication between Heterogeneous Systems

am I supposed to do if no value is assigned to a field? Many questions to
remain unanswered because they do not fall within the competence of
data transfer but are resolved when the data is used by the application11.
The semantic part is described, if necessary, by means of comments
within the abstract syntax or using an explanatory text associated with
it.

We have seen in Section 2.3 on page 11 and in Figure 2.3(b) on
page 12, the advantages of a data transfer which is independent from
the machine architectures. As for the data received as byte streams
or bits, they comply with a syntax called transfer syntax so that these
streams could be properly recognized by the peer machine.

Of course, this transfer syntax thoroughly depends on the abstract
syntax, since it sets up how the data should be transmitted according to
this abstract syntax. In fact, the transfer syntax structures and orders
the bytes (the ‘formant’) that are sent to the other machine (this process
is sometimes called ‘marshalling’). But contrary to the abstract syntax,
it is a physical quantity and, because of that, it should take into account
the ordering of the bytes, the weight of the bits, etc.

Different transfer syntaxes can be associated with a single abstract
syntax. This is particularly interesting when the throughput increases
and makes more complex encoding necessary: in such a case, however, it
is possible to change the transfer syntax without changing the abstract
syntax.

If we now come back to the example in Figure 2.2 on page 10, we end
up with the four syntaxes of Figure 2.4 on the next page (one abstract
syntax, two concrete syntaxes and one transfer syntax). The dashed
arrows set out the links that exist between the abstract syntax and the
concrete syntax.

From a single ASN.1 data description, we can derive automatically
as many concrete syntaxes (i.e. in as many programming languages) as
necessary, and as many procedures implementing the transfer syntax in
encoders (which encode the data into a bit or byte stream) and decoders
as we want.

As described in Chapter 22 (more particularly in Figure 22.2 on
page 465) it is an ASN.1 compiler that carries out the automatic gen-
eration for us according to the dotted arrows in Figure 2.4 on the next
page, thus sparing considerable effort and meanwhile making it possible

11Nevertheless, we will see in Chapter 15 that since 1994, information object classes
can formalize strong semantic links which can be really convenient for the users.

2 - Utilitarian introduction to ASN.1 15

Abstract syntax in ASN.1

Record ::= SEQUENCE {
name PrintableString (SIZE (1..30)),

age INTEGER,

gender ENUMERATED { unknown(0),

male(1),

female(2) } }

Machine A
Concrete syntax in C

typedef struct Record {
char name[31];

int age;

enum { unknown=0;

male=1;

female=2 } gender;

} Record;

Machine B
Concrete syntax in Objective Caml

type record = {
name : string;

age : num;

gender : t gender }
and t gender = Unknown

| Male

| Female

transfer syntax

(bytes or bits)

Figure 2.4: An example of syntax triad

to inter-connect any number of machines (as in Figure 2.3(b) on page 12).
The compiler should be implemented with some encoding rules, which
describe the links between the abstract syntax and the transfer syntax12.

12Many standards (including [ISO8822] on the Presentation service definition for
example) sometimes do not distinguish the notion of a transfer syntax from that of
encoding rules. We may equally use one or the other in the next chapters whenever
it remains unambiguous.

16 ASN.1 – Communication between Heterogeneous Systems

Chapter 3

ASN.1 and the OSI
Reference Model

Contents

3.1 The 7-layer OSI model 18

3.2 The Presentation layer 20

3.3 The Application layer 24

3.4 The OSI model in the future 26

Should the intermediate ranks of a
monarchy be removed, there would be too
far from the monarch to the subjects; soon
afterwards one would see only a despot and
some slaves: preserving a graduated scale
from the ploughman to the potentate equally
concerns all men, whatever their ranks, and
can be the strongest support of a monarchist
constitution.

Beaumarchais, Le Mariage de Figaro.

Having described the benefits of ASN.1 a priori, we now come to its role
in the OSI model. After a short introduction on the 7-layer OSI model,
we shall discuss in greater length the layers 6 (called Presentation) and 7
(Application) in the context of which the notions of transfer syntax and
abstract syntax introduced in the previous chapter will be re-defined.

18 ASN.1 – Communication between Heterogeneous Systems

7th layer Application Application APDV

6th layer Presentation Presentation PPDV

5th layer Session Session SPDV

4th layer Transport Transport TPDV

3rd layer Network Network Packets

2nd layer Data link Data link Frame

1st layer Physical Physical Bit

7th layer

protocol

6th layer

protocol

Interface between the 6th and 7th layers

OSI physical support

Figure 3.1: 7-layer OSI model. Example of information streams

The main point of this chapter is to put ASN.1 in its historical back-
ground. ASN.1, however, should not be taken as being limited to this
very domain: though historically related to the OSI model, we shall see
in Chapter 7 that ASN.1 is actually used in many applications that are
not based on this 7-layer model.

3.1 The 7-layer OSI model

Telecommunication networks are modeled by a graded order of hierar-
chical layers to make standardization and conception easier. The role
of each layer is to provide services to the layer above, relying on those
offered by the layer below. The higher the layer, the more services it
can offer (but the more abstract their definitions are!) and the less im-
portant the way data are conveyed becomes. The most famous network
architecture is the Open Systems Interconnection model or OSI model,
which features 7 layers as shown in Figure 3.1. It is standardized at
ITU-T under the name “Recommendation X.200” and at ISO under the
reference [ISO7498-1].

3 - ASN.1 and the OSI Reference Model 19

The OSI model goes from the lowest level of signalling techniques up
to high level interactions between specific applications1. In the increas-
ing order, i.e. from bottom to top in Figure 3.1 on the preceding page,
these seven layers are:

• the Physical layer, in charge of the interface between systems and
the physical support, deals with the transmission of bits. It is
concerned with the voltage required to represent a single bit, the
duration of a bit representation in milli-second, the transmission
both ways if needed and other issues of electrical and mechanical
matter;

• the Data Link layer ensures the transmission of information using
error correction and splitting the data into frames (set of bits);
since the physical layer transmits bit streams without knowing
its structure, it is down to the Physical Layer to mark up the
beginning and the end of the frame;

• the Network layer manages the routes (statically and dynamically)
to be taken by the packets (set of frames) to go from one equipment
to another;

• the Transport layer ensures that the data are transmitted at the
right throughput and that they are correctly collected on the re-
ceiving side. It also makes all technology or equipment changes
transparent to the Session layer;

• the Session Layer manages the exchange sessions between two ma-
chines: dialog tokens indicating which is emitting, synchronization
to carry on a transmission where it was interrupted...;

• the Presentation layer is interested in the syntax of the data to be
transmitted. It is in charge of encoding them according to given
rules that have been agreed on beforehand;

• the Application layer is concerned with frequently used application
protocols such as file transfer, electronic mail, remote login...

The layer n of a machine can speak to the layer n of another providing
the dialog complies with certain rules and conventions specific to this

1But little interest has been shown so far to include the layers 8 (Financial) and 9
(Political) in the standardized model!

20 ASN.1 – Communication between Heterogeneous Systems

level. The collection of these rules constitutes the ‘n-layer protocol2’.
The data transmitted by an application that is running on the first
machine should go through the layers down to a medium link. A header
(and an ending mark if required) is added to the data each time it crosses
a new layer. In other words, the n + 1 layer states out how the gap in
the n-level data should be filled.

For each layer of the model, two international standards can be
found: the first describes the service provided by this layer (and defines
the terms and the notation it uses), the second describes its protocol,
i.e. the rules any implementation should respect.

We shall not proceed further with our overview of the OSI model.
The interested reader should find enough material to satisfy any avid
curiosity in [Tan96], [PC93], [Bla91] or [Lar96]. We will go now into more
detail about the top two layers (called Presentation and Application
layers) of the OSI model.

3.2 The Presentation layer

The Presentation layer is the sixth layer of the OSI model; it is described
in the standards [ISO8822] and [ISO8823-1] (among others). It assumes
that a ‘route’ exists between two machines, that it provides the ade-
quate quality of service and that all the functions potentially needed are
available in the low level layers.

Its main role is to ensure the encoding and decoding of the data.
As previously seen in Section 2.1 on page 8, the data representation
(integers, real numbers, strings...) depends on the machine so that a
common representation is required for exchanging the data. The pre-
sentation layer provides the data to be transmitted with this structure
but is not concerned in the semantics of the information.

To make two speakers converse, we need first to share a common
knowledge (a dictionary) and second, we have to agree on a language
before starting a conversation using preliminaries such as:

— Do you speak English? Parlez-vous français ? Te parau
anei ’oe i te reo Tahiti ?
— Je parle français. I speak English.
— Let’s speak English then!

2Like those of etiquette and precedence to be respected in ceremonies or official
protocols!

3 - ASN.1 and the OSI Reference Model 21

Likewise, two systems that communicate should negotiate a common
encoding (BER, PER...) before transmitting the data. It is the role of
the Presentation layer to negotiate this encoding and to actually encode
the information exchanged between the two applications that cooperate.

For doing so, the Presentation layer makes use of the following con-
cepts:

• the abstract syntax, which defines the generic structure of the data
(the various types of data involved) and constitutes the framework
on which relies the dialog with the Application layer (for example,
the data include a component of type boolean and another one of
type integer, which is optional);

• the concrete syntax is local and defines the data representation
in the local system (for example, a C -language implementation of
the types above mentioned);

• the transfer syntax defines the data representation exchanged be-
tween the respective Presentation layers of the two systems thanks
to their Session layers;

• the encoding rules provide a means of going from the local concrete
syntax to the transfer syntax and reverse (for example, all the
data are encoded as triplets 〈data type, data length, data value〉;
boolean values are encoded on a byte with the value 1 or 0...).

Using these notions, we could say that the Presentation layer pro-
vides the following services to the Application layer:

• negotiation3 of the transfer syntax (a means of choosing one at the
beginning of the dialog and a way to change it);

• identification of a collection of transfer syntaxes (i.e. several ways
of representing the abstract syntax);

• translation, using the encoding and decoding rules of the concrete
syntax (internal representation mode), into the transfer syntax
(external representation mode) and reverse;

• association of a negotiated transfer syntax to the abstract syntax
adopted within the applications;

• access to the Session layer’s services.

3If the transfer is in ‘no connection’ mode, the transfer syntax is not negotiated;
the sender chooses it arbitrarily.

22 ASN.1 – Communication between Heterogeneous Systems

Application A Application B

Presentation A Presentation B

1.
P-CONNECT
.request (AS1,AS2)

6.
P-CONNECT
.confirm (AS2)

4.
P-CONNECT
.response (AS2)3.

P-CONNECT
.indication (AS1,AS2)

2. PPDV = AS1(TS1),AS2(TS2,TS3)

5. PPDV = AS2(TS2)

Figure 3.2: Presentation context negotiation

The Presentation layer guarantees the informational content of the
Application layer’s data. The cooperating applications are in charge of
determining all the abstract syntaxes they use for communication and of
informing the Presentation layer. As it knows all the available abstract
syntaxes, the Presentation layer is in charge of the choice of the transfer
syntaxes that are mutually acceptable.

Figure 3.2 presents in more detail the way an application should
invoke the services of the Presentation layer to negotiate the abstract
syntax and the transfer syntax to be used during the data transfer.

1. Application A sends a P-CONNECT.request primitive4 to its Pre-
sentation layer stating the names (AS1,AS2) of the abstract syn-
taxes according to which it may operate the transfer. Each name of
an abstract syntax is actually a series of numbers called an object
identifier5, which can identify the abstract syntaxes universally:
indeed, we should bear in mind that it is an open architecture, it
should accept all sorts of machines, all sorts of abstract syntaxes
and all sorts of transfer syntaxes.

4A primitive is a function which a user or an entity can use to access a service
provided by a layer of the OSI model. A primitive asks a service to carry out an action
or to give account of a measure taken by the entity with which the communication is
set.

5It is a value of the ASN.1 type OBJECT IDENTIFIER described in Section 10.8 on
page 153.

3 - ASN.1 and the OSI Reference Model 23

2. The Presentation layer associates several transfer syntaxes with
each abstract syntax and encodes for the Session layer a Presen-
tation Protocol Data Value (PPDV)6, which is sent to the Presen-
tation layer of the other system. This PPDV contains the names
of the available abstract syntaxes.

3. The Presentation layer B receives this PPDV and sends back a
P-CONNECT.indication primitive to its own Application layer in-
dicating the abstract syntaxes available in Application A.

4. Application B answers with a P-CONNECT.response primitive in-
dicating the names of the abstract syntaxes that can be used for
the transfer7 (only AS2 here).

5. The Presentation layer B receives the primitive and sends a PPDV
stating the transfer syntax which is used with each transfer syntax
that have been agreed on.

6. Finally, the Presentation layer A receives the PPDV, examines
the proposed transfer syntax and if it accepts this, sends a
P-CONNECT.confirm primitive to Application B.

Note that the Presentation layer is not involved in the determina-
tion of all the abstract syntaxes available for the applications. In gen-
eral, there may be more than one combination abstract syntax/transfer
syntax. One abstract syntax can be represented by one or more trans-
fer syntax(es)8; it is also possible to use one transfer syntax to repre-
sent more than one abstract syntax9. The result of the negotiation for
the abstract syntax/transfer syntax combination is called a presenta-
tion context10. Other contexts can be negotiated dynamically during
communication.

6The Presentation Protocal Data Unit (PPDU) that matches this PPDV (i.e. its
type) is defined on page 361.

7If no abstract syntax is known by Application B, the connection stage is denied.
8It occurs for example when the application operates a data encryption: the two

application contexts are negotiated at the connection and used according to the ap-
plication’s needs.

9It occurs for example when documentary database consultations require searching
phases with interactive dialogs followed by the transfer of the selected documents
(see [T.433] for more detail about the transfer service and the structured document
remote handling standards): two abstract syntaxes are encoded with the same transfer
syntax.

10The presentation contexts are identified by integers that are even numbers for

24 ASN.1 – Communication between Heterogeneous Systems

At the end of the initial negotiation the system has a whole set of
presentation contexts at its disposal among which it can, at any time,
choose the appropriate context for the exchange to operate.

The data that come from the Application layer are encoded with
respect to the presentation context involved. When only one context
is specified, they are directly encoded (simple encoding), otherwise all
the application data including the embedded data are preceded by the
appropriate context identifiers (complete encoding).

This presentation is not meant to be exhaustive. This and many re-
lated issues are discussed in comprehensive texts on the subject quoted
at the end of Section 3.1 on page 18. In practice, this negotiation mech-
anism is hardly ever implemented because the abstract syntax and the
transfer syntax are rarely negotiated for communication. However, the
description above is important to understand (partially at least) the use
of the OBJECT IDENTIFIER type (see Section 10.8 on page 153) or the pre-
sentation context switching types such as EXTERNAL, EMBEDDED PDV and
CHARACTER STRING described in Chapter 14.

3.3 The Application layer

The seventh and last layer of the OSI model is called Application layer.
As the highest layer, it is for the communicating application the only
access to the OSI environment and, as such, it provides all the services
that can be used directly by the application.

When referring to the OSI model, we call every communication as-
pects of an application, an application entity11; application entities use
application protocols and presentation services to share information.

The data structure of each application are sent as Application Proto-
col Data Values (APDV, see Figure 3.1 on page 18) specified in ASN.1.
Each time an application wants to transfer data, it provides the cor-
responding APDV to the Presentation layer together with its ASN.1
name. Referring to the ASN.1 definition the Presentation layer knows
the type and length of the data components and the way these should
be encoded to be transmitted. On the other side of the connection, the
Presentation layer analyzes the ASN.1 identifier of the expected data

one entity and odd numbers for the other to prevent overwriting when allocating new
contexts.

11For simplicity’s sake, we shall nonetheless use the term ‘application’ in the rest
of this text.

3 - ASN.1 and the OSI Reference Model 25

structure and then knows how many bits belong to the first component,
to the second etc. With this information, the Presentation layer can
operate all the necessary conversions to provide the data according to
the internal format of the receiving machine.

ASN.1 is the only representation used for OSI applications since ISO
demands that all the data exchange between the Application and the
Presentation layer should be described with an ASN.1 abstract syntax.
As far as the OSI model is concerned, ASN.1 is mainly used for high-
level layers (particularly because low-level layers existed before ASN.1),
but this should not be considered as a restriction. If ASN.1 were more
generally used on low level layers, sufficiently compact encoding would
have to be used to prevent overloading the data.

Concerning the Application layer, such a structured and powerful
notation as ASN.1 is necessary because it is not possible to gather bits
in bytes12 any more as it could be done for lower-level layers. Moreover,
we cannot ask application designers to be perfectly aware of problems
encountered only when encoding the messages in bits! The semantics of
the transferred data depends on the application and, because of that, it
only concerns the Application layer. This semantics is partly described
with ASN.1 in an abstract syntax definition, and the rest is described
in comments or documented with the ASN.1 specification.

Some applications were so widespread that standards were agreed
upon to prevent every company from developing specific programs and
thereby ensured the most general use for the defined protocols:

• ACSE (Association Control Service Element [ISO8650-1]) is de-
signed to set a connection called ‘association’ on the Application
layer between two application entities and ensures that this termi-
nates with no loss of information.

• ROSE (Remote Operation Service Element [ISO9072-2] and
[ISO13712-1]) makes the existence of a communication between
remote processes transparent for the application programmer and
enables operation remote calling;

• RTSE (Reliable Transfer Service Element [ISO9066-2]) pro-
vides a transparent APDU transfer service, which is safe and
generic (restarting the transfer where it was interupted if needed);

12In practice, a significant number of protocols (in the ISDN domain, for example)
is still specified using cross-array for grouping bits. Experience shows that the cost
in terms of tests and validation of such informally described protocols is significantly
high (see Section 23.2 on page 480).

26 ASN.1 – Communication between Heterogeneous Systems

• CCR (Commitment, Concurrency, and Recovery [ISO9805-1]) co-
ordinates safely the interactions between multiple sites even in
breakdown situations and is used when high-level reliability is re-
quired;

• MHS (Message Handling System [X.400]) is an e-mail system.

The list of application services is not exhaustive; these can be combined
to build up more complex units.

3.4 The OSI model in the future

The OSI model, although still relevant for today’s computing architec-
ture, is sometimes considered to be phasing down because:

• it is mainly used by those who cannot avoid it (the national stan-
dardization organizations that are on the ISO committees or the
ITU-T’s operators for example);

• the standard documents are expensive and difficult to obtain from
the national standardization organizations13;

• the number of layers is excessive, for it makes the model too com-
plex (still note that an efficient application of an OSI protocol can
limit the size of the headers and ending blocks induced by the
7-layer model to around 10 % of the overall size);

• ASN.1 remains an artificial addition to the model: the model had
originally no Application layer and was not meant to: the Pre-
sentation layer would have specified document format common for
all the applications and the Session layer would have been used to
make sure a copy of this document was properly maintained on
each side;

• it provides standards for services that are insufficiently tested be-
fore their publication;

• it is not applicable for new types of networks such as ATM;

13However, note that the JTC 1 (see Section 6.1 on page 54) asked the ISO Council
for distributing the various versions of the standards on the Web. The users cannot
wait for the answer!

3 - ASN.1 and the OSI Reference Model 27

• it is much less established and active in TCP/IP protocols (even
though these are equivalent to the layers 3 and 4 and though the
OSI stack offers a set of functionnalities that are more advanced
and sophisticated than TCP/IP) and it does not offer reliable tools
both affordable and adapted to the client’s specific needs.

We shall not discuss the model’s future in greater length14; it should
be noted that ASN.1 is one of the concepts that should live through,
particularly because it is more and more used in protocols outside the
OSI world (see Chapter 7). However, to ensure that the notation keeps
up its position, the standard should get rid of its few ambiguous parts,
sometimes awkwardly put, and the new concepts that will be introduced
should be easier to manipulate and should prove useful for the specifier.
This would prevent the notation from being considered as the private
domain of a few, perhaps suspected to be disconnected from reality and
ill-at-ease when it comes to follow the technical changes. It is definitely
today’s willingness of the ASN.1 working group. Long live ASN.1!

14Other drawbacks of using the OSI model are listed in [Tan96, Section 1.6].

28 ASN.1 – Communication between Heterogeneous Systems

Chapter 4

Your first steps with ASN.1

Contents

4.1 Informal description of the problem 30

4.2 How should we tackle the problem? 31

4.3 Ordering an item: from general to particular 32

4.4 Encoding and condition on distinct tags 35

4.5 Final module . 36

4.6 A client-server protocol 38

4.7 Communicating applications 40

“Why, then,” inquired the Sirian, “do
you quote the man you call Aristotle in that
language?”
“Because,” replied the sage, “it is right and
proper to quote what we do not comprehend
in a language we least understand.”

Voltaire, Micromegas.

In the previous two chapters, we have exposed the main principles of
data transfer, particularly in the context of the OSI model. We now put
this into practice in the study of a ‘real life’ example where we tackle
the problem of specifying data transfer and how to describe these data
in the abstract syntax notation.

30 ASN.1 – Communication between Heterogeneous Systems

The ASN.1 entities used in this chapter are fairly simple but they
will make the concepts described in the next chapter easier to intro-
duce. This tutorial mainly aims at helping the reader get familiar with
ASN.1 concepts and syntax. For doing so, we start from the informal
description of a module and draw out its ASN.1 equivalents.

4.1 Informal description of the problem

Suppose a company called MicromegAS owns several sales outlets linked
to a central warehouse where the stocks are maintained and deliveries
start from. It has been agreed that this network should be organized
using OSI solutions and a client-server model1:

• the orders are collected locally at the sales outlets;

• they are transmitted to the warehouse, where the delivery proce-
dure should be managed;

• an account of the delivery should be sent back to the sales outlets
for following through the client’s order.

The following information is available:

• an order should include the client’s identifier, i.e. name and ad-
dress (by default, he/she lives in France);

• the order’s identifier should be unique;

• an order can feature several items identified by a code described
with a label;

• depending on the item, the quantity should be indicated in units,
meters or kilograms; in the last two cases, it must be represented
by a positive number of millimeters or milligrams (decimals are
not valid);

• the prices should be indicated in Euros (the European currency
unit), with a cent precision (each price will be a whole number of
cents);

1The client-server model consists in interrogating a remote application and in
collecting the answers. It uses the ROSE service described on page 80.

4 - Your first steps with ASN.1 31

• the method of payment is associated with each order: check, credit
card, cash. For a check, the check number should be noted; for
a credit card, its type (CB, Visa, Eurocard, Diners or American
Express), and its number together with an expiry date should be
provided;

• the delivery report should be sent back to the warehouse; it should
include for each ordered item, the quantity that can actually be
delivered when the order is made, depending on the stocks.

4.2 How should we tackle the problem?

Contrary to most programming languages, ASN.1, as a specification
language, prescribes no order when defining the entities. It is actually
possible (even preferable for the sake of readibility and comprehension)
to reference the data types before their definition in the specification.
We take advantage of this flexibility to apply a top-down approach to
our problem (from general to particular): first, we consider the prob-
lem globally to describe the most general data types and put off the
definition of the types that are referenced in the general data types; sec-
ond, we concentrate on those more specific types to complete the whole
specification.

This approach is very much similar to the famous four principles
of Descartes’ Discourse on the Method on which we may reflect for a
moment before we carry on further with the case study:

And as a multitude of laws often only hampers justice, so that
a state is best governed when, with few laws, these are rigidly ad-
ministered; in like manner, instead of the great number of precepts
of which logic is composed, I believed that the four following would
prove perfectly sufficient for me, provided I took the firm and un-
wavering resolution never in a single instance to fail in observing
them.

The first was never to accept anything for true which I did not
clearly know to be such [...].

The second, to divide each of the difficulties under examination
into as many parts as possible, and as might be necessary for its
adequate solution.

The third, to conduct my thoughts in such order that, by com-
mencing with objects the simplest and easiest to know, I might
ascend by little and little, and, as it were, step by step, to the

32 ASN.1 – Communication between Heterogeneous Systems

knowledge of the more complex; assigning in thought a certain or-
der even to those objects which in their own nature do not stand
in a relation of antecedence and sequence.

And the last, in every case to make enumerations so complete,

and reviews so general, that I might be assured that nothing was

omitted.

We now focus on the orders taken at the sales outlets. An order can
be divided into two parts: a header including the client’s identification,
followed by a block made of the various ordered items. In ASN.1, this can
be written as follows (the ASN.1 keywords are spelt in capital letters):

Order ::= SEQUENCE {

header Order-header,

items SEQUENCE OF Order-line}

It can be read: ‘an Order is a structure (SEQUENCE) with two compo-
nents: the first called header (starting with a lower-case letter), denotes
data of type Order-header (starting with an upper-case letter); the sec-
ond called items, denotes a list (SEQUENCE OF) of data which are all of
type Order-line’.

Order is an ASN.1 type; note it begins with a capital letter, it is
followed by the “::=” symbol and that its definition does not end with
a semicolon contrary to many programming languages.

4.3 Ordering an item: from general to particu-
lar

We now concentrate on the ‘order header’, which can be described as
a structure with four components: order number, order date, client de-
scription and method of payment:

Order-header ::= SEQUENCE {

number Order-number,

date Date,

client Client,

payment Payment-method }

The order number has at least 12 digits. The order date should be
described by an 8-character string, 2 for the day, 2 for the month, 4 for
the year; this is indicated in the specification comments to make it easier

4 - Your first steps with ASN.1 33

to understand and prevent ambiguities on the meaning to be given to
this value (when emitted or received) by the application:

Order-number ::= NumericString (SIZE (12))

Date ::= NumericString (SIZE (8)) -- DDMMYYYY

A client is described by name, postcode and town (and optionaly
street and country):

Client ::= SEQUENCE {

name PrintableString (SIZE (1..40)),

street PrintableString (SIZE (1..50)) OPTIONAL,

postcode NumericString (SIZE (10)),

town PrintableString (SIZE (1..30)),

country PrintableString (SIZE (1..20))

DEFAULT default-country }

default-country PrintableString ::= "France"

The ‘OPTIONAL’ clause indicates that the component street is not
necessarily transmitted. The clause ‘DEFAULT default-country’ indicates
that if the country component is not transmitted then the receiver should
assign the default value default-country to the country field. This ref-
erence, which starts with a lower-case letter, denotes an ASN.1 value
of type ‘PrintableString’. We could obviously have given the value
"France" after the keyword DEFAULT.

Many times already, we have used in the specification a subtype
constraint (SIZE) to limit the size of a character string. The subtype
specifications are placed in round brackets after the type. They ren-
der the specification more precise and sometimes enable to improve the
transmitting encoding. A constraint such as SIZE (5) imposes that the
postcode should consist of exactly five characters and SIZE (1..20) calls
for a 1 to 20-character string.

Let us now concentrate on the payment method. The client can
choose between:

1. paying by check, in which case the sales outlet transmits the invoice
number;

2. paying by credit card indicating the type of card, its number and
its expiry date;

3. paying cash.

34 ASN.1 – Communication between Heterogeneous Systems

Note that we choose not to transmit the total amount of purchase
assuming that it will be computed again since all the order-lines are
received; here is another characteristic of ASN.1: it is not concerned
with the operations applied to the data before or after reception. Such
information, if needed, can be written in comments.

Payment-method ::= CHOICE {

check NumericString (SIZE (15)),

credit-card Credit-card,

cash NULL }

Each alternative is identified by a name (beginning with a lower-case
letter) and denotes a value of a certain type. For the cash alternative, the
only piece of information to be transmitted is whether this was chosen
or not. Therefore we associate this alternative with the NULL type, which
has only one possible value, NULL, whose encoding is inexpensive.

Using what we already know about ASN.1, we can write the type:

Credit-card ::= SEQUENCE {

type Card-type,

number NumericString (SIZE (20)),

expiry-date NumericString (SIZE (6)) -- MMYYYY -- }

From the five types of credit cards of our informal description, it
follows:

Card-type ::= ENUMERATED { cb(0), visa(1), eurocard(2),

diners(3), american-express(4) }

Note that each identifier of the enumeration starts with a lower-case
letter. The number in round brackets are important since it is they
that are transmitted to the receiving application: the fields’ labels are
there only to help the reader understand the specification and to indi-
cate the meaning associated with each enumerated value. We shall see
on page 136 that these identifiers can be numbered automatically.

We come now to the order line, which is given by:

Order-line ::= SEQUENCE {

item-code Item-code,

label Label,

quantity Quantity,

price Cents }

Item-code ::= NumericString (SIZE (7))

Label ::= PrintableString (SIZE (1..30))

Cents ::= INTEGER

4 - Your first steps with ASN.1 35

We prefer to call ‘Cents’ the type of the price component rather than
indicating in comments that the price of the article is an whole quantity
in cents. Generally speaking, the type names and value identifiers must
be chosen with great care: if the information is not in comments it will
be kept by the ASN.1 tools and appear in the programs they generate
(otherwise it is discarded).

Depending on the items, the quantity can be expressed in three dif-
ferent ways:

Quantity ::= CHOICE { units INTEGER,

millimeters INTEGER,

milligrams INTEGER }

In the next section, we show how principles that are normally down
to the encoding rules can be taken into account on the abstract syntax
level. It can be left aside if the reader would rather finish up with the last
part of MicromegAS specification first (and go directly to Section 4.5).

4.4 Encoding and condition on distinct tags

The way the Quantity type has just been defined is in fact invalid: we
cannot guarantee that a quantity expressed in millimeters will be in-
terpreted in the same unit by the receiving application. Indeed, when
encoded2, each type is associated with a tag (suppose it is a number for
the moment) to be transmitted just before the value so that the receiver
could interpret properly the arriving data. As the three alternatives of
the CHOICE have the type INTEGER, they will all have the tag 2, which is by
default the tag given by the ASN.1 standard to the type INTEGER. There-
fore, we have to associate by hand a distinct tag with every alternative
using square brackets before each type:

Quantity ::= CHOICE { units [0] INTEGER,

millimeters [1] INTEGER,

milligrams [2] INTEGER }

The same problem may have occured for the type SEQUENCE for which
some components could have been optional as we shall see in Section 12.2
on page 218. The tags are also used to detect whether optional compo-
nents are absent or present. In fact, all the SEQUENCE types introduced
since the beginning of the chapter are not concerned with the problem.

2In this case study, a BER encoding is assumed.

36 ASN.1 – Communication between Heterogeneous Systems

However, if the SEQUENCE types are replaced by SET types, all the
components should be tagged by hand (i.e. that of the specifier...) as in
the following example:

Client ::= SET {

name [0] PrintableString (SIZE (1..20)),

street [1] PrintableString (SIZE (1..50)) OPTIONAL,

postcode [2] NumericString (SIZE (5)),

town [3] PrintableString (SIZE (1..30)),

country [4] PrintableString (SIZE (1..20))

DEFAULT default-country }

Indeed, the SET type is also a structure but its components are not
necessarily sent in the specification’s order; through these tags the re-
ceiver has a means of determining each component received.

We shall see in Section 12.1.3 on page 213 that it is possible to ignore
the problem of unicity of each tag putting the clause AUTOMATIC TAGS in
the header of the ASN.1 module (as we will do for the Module-order

module just below).

4.5 Final module

We conclude the specification of MicromegAS’s data transfer with the
delivery report sent by the sales outlets after receiving an order:

Delivery-report ::= SEQUENCE {

order-number Order-number,

delivery SEQUENCE OF Delivery-line }

Delivery-line ::= SEQUENCE { item Item-code,

quantity Quantity }

All the types defined in this chapter are then grouped in the same
module, which constitues the complete specification for the initial prob-
lem of the MicromegAS company presented in Section 4.1 on page 30:

Module-order DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

Order ::= SEQUENCE {

header Order-header,

items SEQUENCE OF Order-line}

4 - Your first steps with ASN.1 37

Order-header ::= SEQUENCE {

number Order-number,

date Date,

client Client,

payment Payment-method }

Order-number ::= NumericString (SIZE (12))

Date ::= NumericString (SIZE (8)) -- MMDDYYYY

Client ::= SEQUENCE {

name PrintableString (SIZE (1..20)),

street PrintableString (SIZE (1..50)) OPTIONAL,

postcode NumericString (SIZE (5)),

town PrintableString (SIZE (1..30)),

country PrintableString (SIZE (1..20))

DEFAULT default-country }

default-country PrintableString ::= "France"

Payment-method ::= CHOICE {

check NumericString (SIZE (15)),

credit-card Credit-card,

cash NULL }

Credit-card ::= SEQUENCE {

type Card-type,

number NumericString (SIZE (20)),

expiry-date NumericString (SIZE (6)) -- MMYYYY -- }

Card-type ::= ENUMERATED { cb(0), visa(1), eurocard(2),

diners(3), american-express(4) }

Order-line ::= SEQUENCE {

item-code Item-code,

label Label,

quantity Quantity,

price Cents }

Item-code ::= NumericString (SIZE (7))

Label ::= PrintableString (SIZE (1..30))

Quantity ::= CHOICE { unites INTEGER,

millimeters INTEGER,

milligrams INTEGER }

38 ASN.1 – Communication between Heterogeneous Systems

Cents ::= INTEGER

Delivery-report ::= SEQUENCE {

order-number Order-number,

delivery SEQUENCE OF Delivery-line }

Delivery-line ::= SEQUENCE { item Item-code,

quantity Quantity }

END

As mentioned at the end of Section 4.4, all the types are included in
an automatic tagging environment (clause AUTOMATIC TAGS), to spare us
the trouble of tagging one by one the alternatives of the CHOICE types
and the optional components of the SEQUENCE types.

4.6 A client-server protocol

As a conclusion for our first steps with ASN.1, we specify a data exchange
protocol between the sales outlets and the warehouse. The protocol
should provide the following functionnalities:

1. make an order and receive a delivery report;

2. consult an item using its code and obtain the available quantity in
store;

3. receive the state of an on-going order with the list and the quantity
of items delivered so far (order follow-up).

We see that the term ‘protocol ’ embraces all at once the data to
be transmitted, the rules that indicate when a given data should be
transmitted and the nature of the service that conveys the data.

Figure 4.1 on the next page shows two systems that cooperate by
exchanging messages of the same type called Application Protocol Data
Unit (APDU, more generally referred to as PDU).

The questions the sale outlets may ask the warehouse and those the
latter may ask the former constitute as many alternatives for this PDU,
which should be of type CHOICE.

4 - Your first steps with ASN.1 39

sales outlets warehouse

PDU (answer)

PDU (question)

Figure 4.1: Data exchange between two systems: the question and the
answer are of the same type

Since we re-use certain types of the previous module called
Module-order, we now import them in this second module thanks to
the IMPORTS clause:

Protocol DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

IMPORTS Order, Delivery-report, Item-code, Quantity,

Order-number FROM Module-order ;

PDU ::= CHOICE { question CHOICE {

question1 Order,

question2 Item-code,

question3 Order-number,

... },

answer CHOICE {

answer1 Delivery-report,

answer2 Quantity,

answer3 Delivery-report,

... }}

END

Note that answer1 and answer3 do not include the order number
and that answer2 does not recall the item code sent in question2: we
make the implicit assumption that the operations are synchronous, i.e.
a question is immediately followed by the corresponding answer. The
ROSE protocol ensures such a property. As a result, we consider that
information of this nature is useless in the answer.

The two ellipses “...”, called extension markers, can indicate that
should the MicromegAS society require it, we have the possibility of
adding new questions and new answers in the next versions of the pro-
tocol specification. In this case, the data transfer can carry on even if
some sales outlets have kept old versions of the protocols although the
central warehouse took over the new version.

We did not mean to tackle the MicromegAS exhaustively in this case
study, but a complete and real use of the ROSE protocol (described on

40 ASN.1 – Communication between Heterogeneous Systems

page 80) should lead to the definition of three information objects of the
class OPERATION (see Chapter 15); the first corresponds to sending an
order, the second to consulting an item and the third to interrogating
an on-going order. Each of these objects would include the ASN.1 type
of the question (the argument of the operation) and that of the error
list which may be returned in case of failure as shown in the following
example:

question1 OPERATION ::= {

ARGUMENT Order

RESULT Delivery-report

ERRORS {unavailable | order-rejected}

SYNCHRONOUS TRUE

CODE local:1 }

In order to execute one of these three operations, we would have
to transmit its CODE and its arguments as values of the Invoke type of
ROSE. The client-server model would then be obtained with no more
effort using the numerous functionnalities of the already existing generic
ROSE protocol.

4.7 Communicating applications

Now that the ASN.1 specification is written, what should the program-
mer do in practice (since the programmer and the specifier are hardly
ever the same person) to implement the communicating application of
the central warehouse or the sales outlets?

The person in charge of this implementation collects all the ASN.1
modules and give them to an ASN.1 compiler. This tool checks whether
the specification is properly written, i.e. if it respects the spelling con-
ventions of the language but also its ‘rules’. If the specification complies
with all the criterions of the ASN.1 standard, the compiler generates
(generally) two files: the first for the translation of the ASN.1 module
in data types of the C language (or some other), the second gathers the
C functions to code and decode the data for these types.

Using another compiler (a C compiler if the language mentioned
above is C), the two files are ‘linked’ with the kernel of the commu-
nicating application. It is the kernel that for example checks, in the
MicromegAS’s database whether the items that are being ordered are
actually in store, computes the total amount of the order, and edits and
prints out the invoice. The C compiler generates a binary file that can

4 - Your first steps with ASN.1 41

be executed on the communicating system to transmit the data (send
questions and receive answers) that respect the PDU type specified in the
ASN.1 Protocol module.

We see that once the ASN.1 specification has been written, the pro-
cess that consists in deriving a communication program from it is easy
and fast. In particular, if they use an ASN.1 compiler the program-
mers can ignore the way the data are coded in bit or byte streams for
transmission. We shall come back to these notions in Chapter 22.

42 ASN.1 – Communication between Heterogeneous Systems

Chapter 5

Basics of ASN.1

Contents

5.1 Some lexico-syntactic rules 44

5.2 Types . 45

5.3 Values . 48

5.4 Information object classes and information objects . . 49

5.5 Modules and specification 51

It is not the language that make the
concepts but the concepts that makes the
language. And the language used for express-
ing them always betrays them in one way or
another.

Jacques Maritain, The Peasant in Garonne.

During our first steps with ASN.1, we mainly defined types (sometimes
constrained) that were collected in different modules. We describe in
this chapter many other entities that can be handled by ASN.1. Every
concept is not described into detail here (a thorough description can
be found in the second part ‘User’s Guide and Reference Manual’, on
page 95), this chapter is meant to provide an overview of the various pos-
sibilities offered by the notation and it shows how these functionalities
match with one another to introduce our next chapter.

Before describing these concepts, we start with general spelling con-
ventions to be respected in ASN.1.

44 ASN.1 – Communication between Heterogeneous Systems

5.1 Some lexico-syntactic rules

All the identifiers, references and keywords begin with a letter followed
by another that can be upper-case or lower-case, by a digit or a dash “-”1.
These are some valid ASN.1 identifiers and keywords:

INTEGER

v1515

No-final-dash

MY-CLASS

and some others, lexically invalid :

Final-dash-

double--dash

under score

1515

3M

In addition to this rule, the ASN.1 keywords are spelt exclusively
in upper-case letters, except some character string types (such as
PrintableString, UTF8String...) because they are in a way re-named
after the primitive OCTET STRING type.

The strings can be of three kinds:

1. character strings in quotation marks:

"This is a string"

2. binary strings in quotes followed by the upper-case letter B:

’01101’B

3. hexadecimal strings in quotes followed by the upper-case letter H:

’0123456789ABCDEF’H

For the numbers, the decimal form (with a dot) is not allowed so
that it is impossible to use floats the way they are in other languages
(the ‘real numbers’ in ASN.1 are formally defined with three integers:
the mantissa, the base, and the exponent).

The comments start with a double dash “--” and stop either at the
end-of-line or at the next double dash if found before. Comments are
added to the specification to precise the interpretation associated with a

1Note that the underscore is forbidden in identifiers and keywords (see footnote 1
on page 100). This symbol can only appear within character strings nested in quota-
tion marks or in comments.

5 - Basics of ASN.1 45

given part or to describe informally what cannot be done formally with
the language.

As in most computing languages, spaces, tabulations, newlines and
comments are not interpreted in the ASN.1 specification; they are use-
less except of course for clarity’s sake to separate the lexemes, such as
keywords, identifiers, numbers or strings. However, the definition (or
“assignment” as in the standard) symbol “::=” should not include sep-
arators, otherwise it would not be interpreted properly by an ASN.1
tool.

Finally, we shall see that ASN.1 uses the different cases (lower-
case/upper-case) to distinguish between the various sorts of entities.
Thus, words that begin with a lower-case letter (the identifiers and the
value references) make reading and understanding of the specification
easier but do not influence the generation of the bits or bytes to be
transmitted.

5.2 Types

The main concept in ASN.1 is that of type. A type is a non-empty set of
values, which can be encoded to be transmitted. Although comparable
with the formalisms available in Pascal or Ada, for instance, for defining
complex data types, ASN.1 types should be specific to this transfer task
and provide the adequate functionnalities (like the OPTIONAL clause of
the SEQUENCE or SET types for example). Types, such as BIT STRING or
EMBEDDED PDV, are even more specific to telecommunications.

The main ASN.1 basic types are presented in Table 5.1 on the fol-
lowing page. More complex types can be built using these basic types
combined by the constructed types presented in Table 5.2 on the next
page.

When a type is defined, it should be given a name to reference it
in another type assignment. This type reference should begin with an
upper-case letter and respect the rules of the previous section. All ASN.1
assignments use the symbol “::=”; so does the type assignment:

Married ::= BOOLEAN

Age ::= INTEGER

Picture ::= BIT STRING

Form ::= SEQUENCE { name PrintableString,

age Age,

married Married,

marriage-certificate Picture OPTIONAL }

46 ASN.1 – Communication between Heterogeneous Systems

BOOLEAN Logical values TRUE and FALSE

NULL Includes the single value NULL, used for de-
livery report or some alternatives of the
CHOICE type (particularly for the recursive
types)

INTEGER Whole numbers (positive or negative), pos-
sibly named

REAL Real numbers represented as floats

ENUMERATED Enumeration of identifiers (state of a ma-
chine for instance)

BIT STRING Bit strings

OCTET STRING Byte strings

OBJECT IDENTIFIER,
RELATIVE-OID

Unambiguous identification of an entity
registered in a worldwide tree

EXTERNAL, EMBEDDED

PDV

Presentation (6th layer) context switching
types

...String Various types of character strings (see Ta-
ble 11.1 on page 175)

CHARACTER STRING Allows negotiation of a specific alphabet for
character strings

UTCTime,
GeneralizedTime

Dates

Table 5.1: Basic types

CHOICE Choice between types

SEQUENCE Ordered structure of values of (generally) different
types

SET Non-ordered structure of values of (generally) dif-
ferent types

SEQUENCE OF Ordered structure of values of the same type

SET OF Non-ordered structure of values of the same type

Table 5.2: Constructed types

5 - Basics of ASN.1 47

Payment-method ::= CHOICE {

check Check-number,

credit-card SEQUENCE { number Card-number,

expiry-date Date }}

Note that ASN.1 assignments do not end with a semicolon contrary to
many computing languages.

As we shall shortly illustrate by some examples, each component
of a SEQUENCE or SET structured type, and each alternative of a CHOICE

type is named by an identifier (word beginning with a lower-case letter).
These identifiers improve the specification readability but they are not
transmitted between the communicating applications (in fact during the
encoding, the components are represented by a different mechanism).

In order to inform the receiving machine of the type of the value it
will encounter so that this value could be properly decoded, the sending
machine’s encoder can associate a tag with it. By default the encoder
associates a tag called ‘universal’. Sometimes, this default case is not
enough to remove all ambiguities and it is necessary to indicate explicitly
the tags before the component or alternative types for the constructed
types. A tag is a number between square brackets before a type as in:

Coordinates ::= SET { x [1] INTEGER,

y [2] INTEGER,

z [3] INTEGER OPTIONAL }

Afters ::= CHOICE { cheese [0] PrintableString,

dessert[1] PrintableString }

The problem of tagging is investigated more thoroughly in Sec-
tion 12.1 on page 206.

ASN.1 allows recursive type assignments but we should ensure that
it contains at least one finite value (i.e. non recursive) because encoding
rules do not manage infinite values. However, most of the components
of the structured types end with simple types.

Every now and then, we need to restrict the set of values (very often
infinite) taken by a type to make the specification more precise (to refine
it): it ensures interworking but also improves the encoding (particularly
with the packed encoding rules). For doing so, we use subtype con-
straints, which (almost systematically) appear in round brackets after
the type:

Lottery-number ::= INTEGER (1..49)

Lottery-draw ::= SEQUENCE SIZE (6) OF Lottery-number

48 ASN.1 – Communication between Heterogeneous Systems

Upper-case-words ::= IA5String (FROM ("A".."Z"))

Phone-number ::= NumericString (FROM ("0".."9"))(SIZE (10))

Coordinates-in-plan ::=

Coordinates (WITH COMPONENTS {..., z ABSENT})

As a constrained type (or subtype) is also a type, it can be used
wherever a type may appear.

Finally, when a new specification is produced where new components
are added in a SET, SEQUENCE or CHOICE type or a subtype constraint is
extended, two communicating machines, especially in an open network
do not always use encoders and decoders produced from the same spec-
ification version. In order to prevent a machine from stopping when too
much (or too little) data are received, it is possible to denote the place
where other types can be expected with the extension marker “...”:

Type ::= SEQUENCE { component1 INTEGER,

component2 BOOLEAN, -- version 1

... }

A second version of this type may then be written:

Type ::= SEQUENCE { component1 INTEGER,

component2 BOOLEAN,

...,

[[component3 REAL]], -- version 2

... }

Every new group added to a type assignment can be nested double
square brackets “[[” and “]]”.

5.3 Values

When defining new types, value members of these types can be defined
explicitly. A value assignment also uses the symbol “::=”, but a value
should be referenced by a word starting with a lower-case letter and
must be governed by a type (a name starting with an upper-case letter):

counter Lottery-number ::= 45

sextuple Lottery-draw ::= { 7, 12, 23, 31, 33, 41 }

pair Coordinates ::= { x 5, y -3 }

choice Afters ::= dessert:"profiterolles"

We should stress once again on the fact that (abstract) values de-
fined in an ASN.1 module are never encoded. Indeed, the values to be

5 - Basics of ASN.1 49

transmitted are provided dynamically to the encoder by the computing
application. References to ASN.1 values are actually used to improve the
readability of the subtype constraints, the default values of some struc-
tured type components and the definition of value sets and information
objects:

upper-bound INTEGER ::= 12

Interval ::= INTEGER (0..upper-bound)

default-value Interval ::= 0

Pair ::= SEQUENCE {

first [0] Interval DEFAULT default-value,

second [1] Interval DEFAULT default-value }

5.4 Information object classes and information
objects

It is sometimes necessary to express more formally than in comments,
the semantic links that exist between types and values defined in a spec-
ification. We sometimes want to represent the fact that the component
of a structured type depends on the value associated with this structured
type.

Semantic links are formalized with information object classes. For
the class assignment, the symbol “::=” must be used and followed by
the keyword CLASS. The name of this class should be spelt in upper-case
letters. Thus the class:

OPERATION ::= CLASS {

&number INTEGER UNIQUE,

&Argument-type,

&Return-result-type }

WITH SYNTAX { OPERATION NUMBER &number

TAKES AN ARGUMENT OF TYPE &Argument-type

AND RETURNS A VALUE OF TYPE &Return-result-type }

describes specific operations identified with a unique number, associat-
ing every one of them with its argument type and its result type. We do
not indicate what this operation does since it does not fall not within the
competence of ASN.1 but we specify the data types exchanged when a
machine asks another to execute these operations. The field &number be-
gins with a lower-case letter and is followed by a type; this field, a value
of type INTEGER, is used as an identification of the information object
because it is followed by the keyword UNIQUE. The fields &Argument-type

50 ASN.1 – Communication between Heterogeneous Systems

and &Return-result-type start with an upper-case letter (but are fol-
lowed by nothing else); they reference any ASN.1 type (no ASN.1 type
could have such a representational potential since it would then be im-
possible to encode). The block WITH SYNTAX defines a more user-friendly
syntax to denote the objects of this class.

Every operation is defined as an information object of class OPERATION.
As in every ASN.1 assignment, the object assignment uses a symbol
“::=” after the object name (which starts with a lower-case letter) and
the class name (entirely in upper-case letters):

plan-projection OPERATION ::= {

OPERATION NUMBER 12

TAKES AN ARGUMENT OF TYPE Coordinates

AND RETURNS A VALUE OF TYPE Coordinates-in-plan }

As the same specification is known by two communicating machines,
the same objects can be shared between these two machines.

All the objects of a given class defined in a specification can be
gathered in an object set:

SupportedOperations OPERATION ::=

{ plan-projection | translation | symmetry, ... }

Note that, contrary to an object, an object set name starts with an
upper-case letter. The symbol “...” indicates that new objects may
dynamically be added to this set by the communicating applications.

Information objects are never encoded; the only way of transmitting
items of their information is to reference them within a type. For this
we use the information object set to constrain the components of a
structured type:

Execute-operation ::= SEQUENCE {

code OPERATION.&number({SupportedOperations}),

argument OPERATION.&Argument-type

({SupportedOperations}{@code}) }

Receive-result ::= SEQUENCE {

code OPERATION.&number({SupportedOperations}),

result OPERATION.&Return-result-type

({SupportedOperations}{@code}) }

These obscure definitions mean that when an operation, whose num-
ber is in the code component, should be executed, the operations ar-
guments to be transferred should conform to the type of the field

5 - Basics of ASN.1 51

&Argument-type of this object, which denotes this operation. This
link (or table constraint) ‘@code’ indicates that this argument type de-
pends on the operation to be executed. Likewise, if a machine that has
executed the operation has to transmit the results, its type should be
conditionned by the operation code.

5.5 Modules and specification

Having introduced the various concepts that can be defined and managed
with the ASN.1 notation, we now have to explain how to collect them
to make up the specification of data transfer in a telecommunication
protocol. A specification consists of one or several ASN.1 modules where
each module gathers types (mainly), values, information object classes,
information objects and information object sets.

A module name begins with an upper-case letter. It can be referenced
by a kind of ‘universal pointer’, called object identifier, in curly brackets
after its name.

Here is an example of such a module:

Module2 { iso member-body(2) f(250) type-org(1) ft(16)

asn1-book(9) chapter5(0) module2(1) }

DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

EXPORTS Type2;

IMPORTS Type1, value FROM Module1 {iso member-body(2)

f(250) type-org(1) ft(16) asn1-book(9)

chapter5(0) module1(0)};

Type2 ::= SEQUENCE OF Choice

Choice ::= CHOICE { a INTEGER (0..value),

b Type1 }

END

The clause AUTOMATIC TAGS indicates that the specifier needs not care
of tagging (in square brackets “[” and “]”) the components of the struc-
tured types that are defined afterwards in the module and leaves it to
the compiler.

The clauses IMPORTS and EXPORTS (not mandatory) define the mod-
ule interface. The IMPORTS clause lists the assignment names defined in
other modules and imported in the current module (i.e. those which will
be used within the current module as if they were defined there). The

52 ASN.1 – Communication between Heterogeneous Systems

EXPORTS clause list the assignment names that should be accessible out-
side the current module and therefore could be imported within another
module.

As said in Chapter 4 for our first steps with ASN.1, the specifier is
free to order the assignments of a module as judged fit (even though a
top-down approach is generally adopted, starting from the most general
to end in with the basic types) provided that each name is used only
once (in the same upper/lower-case) to reference a single assignment.
Moreover, the specification can be splitted into as many modules as
necessary for clarity, comprehension, and re-usability.

As a conclusion we can recall that all the assignments (or definitions)
that can appear in an ASN.1 specification are only meant to be linked
in one way or another with the data to be transferred (i.e. with the data
types), which are the raison d’être of ASN.1. In the rest of this text, we
shall regularly come back to this point. In fact, as seen in this chapter,
some ASN.1 features are specific to data transfer; they do not appear in
any other abstract notations or computing languages.

Chapter 6

History

Contents

6.1 International Organization for Standardization (ISO) 54

6.2 International Telecommunications Union (ITU) 58

6.3 The great story of ASN.1 60

6.3.1 Birth . 60

6.3.2 Baptism . 61

6.3.3 The 1989 and 1990 editions 62

6.3.4 The 1994 edition . 63

6.3.5 The 1997 edition . 68

6.4 Compatibility between the 1990 and 1994/1997 versions 72

6.4.1 Composition rules of the two versions 73

6.4.2 Migration from ASN.1:1990 to ASN.1:1997 73

6.4.3 Migration from ASN.1:1994 to ASN.1:1990 77

“Dear Sirs, before banishing Greek, have
you even thought about it? After all what
would you do without Greek? Would Chinese
or a Coptic or Syrian Bible make you turn
away from Homer and Plato?”

Paul-Louis Courier, Open Letter to the
Members of the Académie des Inscriptions et

Belles-Lettres.

54 ASN.1 – Communication between Heterogeneous Systems

The reference to standardization becomes a common place as issues and
conflicts get more obvious. Standardization consists of a collection of
specifications, the standards, which are available to all the key players
of a technico-economic sector.

A standard is defined as “a documented agreement containing tech-
nical specifications or other precise criteria to be used consistently as
guidelines, or definitions of characteristics, to ensure that materials,
products, processes, and services are fit for their purpose”.

Now that the fundamentals of ASN.1 have been exposed we can
describe in detail how the notation has evolved since its creation in the
early eighties. But before telling this story, we should present first the
two main organizations for standardization: ISO and ITU.

6.1 International Organization for Standardiza-
tion (ISO)

The International Organization for Standardization (ISO)1 was estab-
lished by the United Nations in 1946. It was originally in charge of
setting up international standards in numerous areas except electricity,
electronics and electro-technics, which fell within the competence of the
International Electrotechnical Commission (IEC).

It gathers about a hundred countries that delegate their own stan-
dardization committee (called National Body or NB). The USA is repre-
sented by the American National Standard Institute (ANSI)2, France by
the Association Française de NORmalisation (AFNOR), Great Britain
by the British Standards Institute (BSI)3, Germany by the Deutsches In-
stitut für Normung (DIN)4 and Japan by the Japanese Industrial Stan-
dards Committee (JISC)5, to mention but a few. Other organizations
may join the discussions and propose contributions, but they cannot
vote.

1ISO is not really an acronym; it is the Greek prefix that means ‘equal’ and is
shared among the three official languages of this organization: English, French and
Russian. The server http://www.iso.ch provides, among other things, references to all
the standards as well as the list of the committee members. An introduction to ISO
can be consulted at http://www.iso.ch/infoe/intro.htm.

2http://www.ansi.org
3http://www.bsi.org.uk
4http://www.din.de
5http://www.jisc.org/eorg1.htm

http://www.iso.ch
http://www.iso.ch/infoe/intro.htm
http://www.ansi.org
http://www.bsi.org.uk
http://www.din.de
http://www.jisc.org/eorg1.htm

6 - History 55

ISO Council

ISO Central Secretariat

Technical Committees (TC)

SubCommittees (SC)

Working Groups (WG)

Rapporteur Groups

Figure 6.1: ISO breakdown structure

As seen in Figure 6.1 ISO is divided in 172 Technical Committees
or TC in charge of various standardization domains. The subjects
are shared among the SubCommittees (SC), also divided in Working
Groups (WG).

Until 1987, the OSI standards depended on TC 97, called “Telecom-
munications and Information Exchange Between Systems”. In 1987, ISO
and IEC agreed that they were both concerned with Information Tech-
nology and formed a joint technical committee called JTC 16. Figure 6.2
on the following page gives only a partial viewpoint of the structure that
focuses on the issues to be discussed later. The JTC 1 Secretariat is en-
sured by ANSI.

Designing an international standard is often a tedious and complex
process7. A WG gathers experts in charge of a preliminary study which,
if an agreement has been found, leads to the publication of a Draft
Proposal (DP). This drast remains under discussion for twelve weeks
(it can be voted ‘Yes’, ‘Yes with comments’ or ‘No with comments’).
Once the comments have been taken into account so that the number of
negative votes could be reduced, the document is submitted to the TC
that adopts it as a Draft International Standard (DIS) — if only a few
negative votes remain — and sends it again to go round the members
for twelve weeks under the same voting conditions as before.

6http://www.jtc1.org (today, JTC 2 is still unknown!). A complete description can
be found at http://www.iso.ch/meme/JTC1.html. JTC 1 is described thoroughly at
http://www.iso.ch/dire/jtc1/directives.html.

7The process is detailed at http://www.iso.ch/infoe/proc.html.

http://www.jtc1.org
http://www.iso.ch/meme/JTC1.html
http://www.iso.ch/dire/jtc1/directives.html
http://www.iso.ch/infoe/proc.html

56 ASN.1 – Communication between Heterogeneous Systems

JTC 1

SC 2
Coded Character Sets

SC6
Telecommunications &
Information Exchange
Between Systems

WG 1
Layer 2 (OSI)

WG 3
Layer 1 (OSI)

WG 6
Private Telecommuni-
cations Networking

WG 7
Layers 3 & 4 (OSI),
ASN.1, X.400, X.500

SC 21
Open Systems Inter-
connection, Data man-
agement & Open Dis-
tributed Processing

WG 1
OSI Architecture

WG 4
OSI Management

WG 8
Specific Application
Services; layers 5, 6 &
7 (OSI)

WG 7
Distributed Applica-
tions Infrastructures

SC 33
Distributed Applica-
tions Services

WG 1
Message Handling Sys-
tems (X.400)

WG 2
X.500 Directory

WG 8
ASN.1

Figure 6.2: Partial description of JTC 1 structure (groups and commit-
tees surrounded by a dashed line have been dismantled)

6 - History 57

When approved by three quarters of the committee, the document
is submitted to the Central Secretariat (see Figure 6.1 on page 55) to
be translated into French and Russian (the other two official languages
beside English). The document is then ‘granted’ the status of Interna-
tional Standard (IS). It is finally submitted to the ISO Council and is
published by the committee members.

As far as the ASN.1 standard is concerned, its development is usually
carried out by an ISO group called Rapporteur Group and the document
produced should be approved before being sent to ITU-T for official rat-
ification in a plenary meeting. However, as described in Section 6.3.1
on page 60, for historical reasons, ASN.1 stemmed from CCITT works,
which influenced it by numerous contributions. In the eighties, a col-
laboration did exist between the two committees before ISO became the
main actor around 1990. But things can change...

All along this process, an absolute consensus on every issue, or
at least substantial, is ensured by all the members and structures in-
volved (since it often requires to modify the text of the standard in
question). The member committees are under no obligation to adopt
the standards and their contributions should be understood to be on a
voluntary basis.

The addition of a new functionality to a standard is done through
a Proposed Draft Amendment (PDAM) which, after reviewing during
meetings and circulation among the member committees for approval
(vote), reaches the status of Draft Amendment (DAM) and finally amend-
ment. When relatively minor errors or misunderstandings are spotted in
a standard, another procedure, faster than the amendments, can bring
them to public attention: the defect reports, which once approved turn
into Technical Corrigenda that are published in parallel. The number
of Amendments and Technical Corrigenda can be important and it is
sometimes tedious to get all of them: in order to make life easier for
the users of a potentially amended standard, it is preferable that the
corresponding Rapporteur Group issues a new edition of its standard
including all these changes.

The organization of ISO, the document levels and evolution from one
to the other is thoroughly described in [Lar96, Chapter 1] and [Hor96].

58 ASN.1 – Communication between Heterogeneous Systems

6.2 International Telecommunications Union
(ITU)

The International Telecommunications Union (ITU) whose headquar-
ters are based in Geneva, became a specialized institution of the United
Nations in 1947 (it was preceded by the International Telegraph Union
founded in 1865). It gathers 188 countries represented by their public
telecommunication operator and around 450 other members from the
private sector called Registered Private Operating Authorities (RPOA),
such as AT&T and Bell Telephone. The operators from any other orga-
nizations are accepted but have not the right to vote.

The objectives of the ITU is “to promote and to offer technical as-
sistance to developing countries in the field of telecommunications, and
also to promote the mobilization of the material and financial resources
needed for implementation”, and “to promote the extension of the ben-
efits of the new telecommunication technologies to all the world’s inhab-
itants”.

The ITU is made of five permanents organs among which is
the Consultative Committee on International Telephony and Telegra-
phy (CCITT) in charge of telecommunication networks, as well as wired
transmission of voice, data and television. After the re-organization
of ITU in 1992, the CCITT became ITU-T (ITU - Telecommunication
Standardization Sector).

The ITU-T publishes recommendations referenced by a letter (one
for each domain) and a number. The sectors we are more particularly
interested in are:

• F: Non-Telephone Telecommunications Services;

• H: Audiovisual and Multimedia Systems;

• Q: Switching and Signalling;

• T: Terminals for Telematic Services;

• V: Data Communications Over the Telephone Network;

• X: Data Networks and Open System Communications;

• Z: Programming Languages.

6 - History 59

Until 1992, all of the CCITT recommendations approved by the com-
mittee members in plenary meetings were published every four years
(even if some parts had not been completed yet)8 as a leaflet with a dif-
ferent colour for each release: yellow for 1976-80, red for 1980-84, blue9

for 1984-88 and white for 1988-92.

ITU-T now publishes each standard separately as soon as it is consid-
ered as stable. Besides, since 1994, ISO/IEC and ITU-T jointly publish
texts with one reference for ISO/IEC and another for ITU-T, in order to
prevent any inconsistencies between them as it was the case for ASN.110.

The standard can be purchased from the ITU-T secretary in Geneva
or on their web site11. The ITU-T members that want to provide inter-
national services in domains of the organization’s competence tend to
apply these recommendations.

The ITU-T is divided into Study Group (SG) where we find:

• SG VII, “Data Networks and Open System Communications”, re-
sponsible, among other things, for interconnection (hence ASN.1),
for the X.25 network standard, for the X.400 directory standard
for e-mail, for security and for network management;

• SG VIII, “Terminals for Telematic Services”, in charge of Teletex,
of Videotex and of the character sets.

The work of each SG is subdivided into ‘questions’: some of them
can be very general such as Q24/7, which concerns the OSI model and
some others more precise like updating an already published recommen-
dation. Every question of this work schedule ends in the release of a
new recommendation or the amendment of an existing one.

ITU-T is more thoroughly described in [Hor96].

8Since ISO publish their documents when the studies are over, it sometimes implied
correcting mistakes from the CCITT! However, CCITT policy is well-founded: the
marketing and investment programs of its members (the networks operators) cannot
wait for the mistakes of a standard to be corrected.

9Hence the famous ‘Blue Book’ in which, for the first time, appeared the word
‘ASN.1’ whereas the first version of the notation belongs to the red book.

10We can mention another example of inconsistency for the X.400 e-mail standard
series: in the CCITT text, the e-mails could only cross a border through a public
operator or RPOA, which was no restriction since every member belonged to either
of the two categories. On the other hand, the ISO text allows a private system to be
connected across a border.

11http://www.itu.int/itudoc/itu-t/rec.html

http://www.itu.int/itudoc/itu-t/rec.html

60 ASN.1 – Communication between Heterogeneous Systems

6.3 The great story of ASN.1

This amazing story begins in the summer of 1982. Many people who
worked on the development of standards on the Application Layer had
spotted the same problem: the data structures had become too complex
to allow bespoke procedures for encoding and decoding in bits or bytes
(the word ‘Open’, term of utter importance in OSI, had appeared in
1978). Likewise, as the compilers took over the assemblers, the com-
mon belief was that encoders should be generated automatically from a
specification (to make the latter the equivalent to a computer program).

6.3.1 Birth

James White [Whi89] and Douglas Steedman (Bell-Northern Research,
Canada) independently proposed the basis of a notation and an algo-
rithm that could define the format of the encoding bits for the e-mail
Message Handling Systems (MHS) protocols. This notation and encod-
ing scheme were machine-independent and could convey complex data
structures.

James White was at the time the editor of the X.400 (MHS) rec-
ommendation series at CCITT and designed for Xerox Corporation, the
Courier12 notation [Xer81] that could represent data to be transferred by
Remote Procedure Call (RPC) from the Xerox Network Services (XNS)
protocol series. Courier was the first external data notation to be well-
known; it also positively influenced the XDR from Sun Microsystems
Inc. and the NDR from Apollo Computer Inc.: all this is discussed in
greater length in Chapter 24. It is therefore an adaptation of Courier
notation that James White proposed.

After meeting Douglas Steedman, the consensus was found on James’s
position (for the benefit of future users as acknowledged by D. Steedman
himself in his book [Ste93]!).

In 1984, CCITT standardizes the notation under the reference X.409
(‘Red Book’). The X.409 recommendation called ‘Message Handing Sys-
tems: Presentation Transfer Syntax And Notation’, had 32 pages in its

12The syntax of the Courier notation was adapted from Xerox ’s Mesa used for de-
veloping systems composed of separate modules with a controlled information sharing.
Reading the Mesa manual [MMS79] is quite singular for someone who is familiar with
the language: we can recognize obviously some syntactic features of ASN.1 but also
notice that a semicolon was needed at the end of a type definition, or that a plethora
of square brackets has now been replaced by (a plethora of) curly brackets!

6 - History 61

English Version. Its purpose and scope were to define “the presenta-
tion transfer syntax used by application layer protocols in message han-
dling systems and by the document interchange protocol for the telematic
services. In the architecture of open systems interconnection (OSI), a
presentation transfer syntax is used to represent information exchanged
between application entities”.

It defines the built-in types ANY, BIT STRING, BOOLEAN, CHOICE,
INTEGER, NULL, OCTET STRING, SEQUENCE, SEQUENCE OF, SET and SET

OF, as well as the character string types IA5String, NumericString,
PrintableString, T61String, VideotexString, and the time types
GeneralizedTime and UTCTime: 14 tags of the UNIVERSAL class altogether,
but also (already!) the unfortunate macros (see Chapter 16). The pre-
sentation of each type was followed by its value notation and its en-
coding called at the time ‘standard representation of type’. Every form
of encoding (primitive or constructed, of fixed or unknown length) was
already defined. The grammar presented in a condensed format, with
all the alternatives of a rule on the same line, took only slightly more
than a page!

The X.409 notation was totally independent of the MHS system,
partly because the objects handled by the e-mail protocol (no size limit,
several string types, linked structures, numerous options) were arbitrar-
ily complex13. As a result, many groups that were working on standard-
ization of OSI applications realized it could also prove useful to them.

6.3.2 Baptism

Initiated by John Larmouth14 (Salford University, UK), the X.409 no-
tation was adopted by the ‘OSI world’ almost immediately. He dis-
tinguishes abstract notation from transfer syntax in two different doc-
uments and proposes the term ‘ASN.1’15 whereby ISO implies by the
number ‘1’ that several other notations could be standardized after that
(such a thing never occurred so far, and the unlikely ASN.2 would have

13As shown in Figure 7.1 on page 82, an e-mail is made of an envelop and a content;
the envelop includes a list of addressees, the sending date, etc.; every addressee is also
described in a structure and so on.

14http://www.salford.ac.uk/iti/jl/larmouth.html
15The dot “.” is history: at the time of teletype terminals, the number ‘1’ and the

upper-case ‘I’ had the same graphical representation and typing mistakes may have
induced a confusion between ASN1 and ANSI (the American standardization organiza-
tion).

http://www.salford.ac.uk/iti/jl/larmouth.html

62 ASN.1 – Communication between Heterogeneous Systems

to bring substantial features to claim the name). When ASN.1 was first
published, so much more readable was the text that some people called
it ‘the English version of X.409’ !

Though technically equivalent to X.409, the two ISO documents were
completely rewritten because of the emergence of the concept of Presen-
tation layer. It had also become necessary to distinguish a piece of
information on the Application layer from its representation, thereby
allowing standardization and use of several abstract transfer syntaxes16

(those concepts were accepted much later by CCITT).

Though reluctant at first, CCITT agreed in 1985 to work jointly
with ISO and adopted the structure of two distinct documents as well
as the terms ‘ASN.1’ and ‘BER’. The two documents were published in
1987 under the references ISO 8824 and ISO 8825. Compared to those
of CCITT, they included three new character string types together with
the notion of registration tree and the OBJECT IDENTIFIER type.

6.3.3 The 1989 and 1990 editions

In 1987, as described in Section 6.1 on page 54, ISO merged its activity
in information technology domains with that of IEC and created the
joint technical committee JTC 1, which took over the work on ASN.1.

In 1989, CCITT published two documents referenced by
X.208 (ASN.1) and X.209 (BER), which replaced the X.409 recom-
mendation. New features resulting from common work with JTC1
were introduced: subtypes, floats (REAL type), pointers (ANY DEFINED

BY type) and the default tagging modes (IMPLICIT TAGS and EXPLICIT

TAGS). Their publication in the X.200 series, called ‘General OSI Infras-
tructure’, acknowledged ASN.1 universally as a specification language
for the Application layer.

In 1990, ISO published new releases for the ISO 8824 and ISO 8825
standards. Compared to X.208:198817, there are three minor differences:

• although X.208:1988 imposes the use of an identifier of type
INTEGER, OBJECT IDENTIFIER or ENUMERATED after the clause ANY

16This term leads back to the term ‘Basic’ in BER (Basic Encoding Rules), that
gives way to the standardization of many other encoding rules as described in Chap-
ter 18.

17We use the symbol “:” as a convention for denoting a standard with respect to
its publication date.

6 - History 63

DEFINED BY, ISO 8824:1990 accepts a CHOICE between INTEGER and
OBJECT IDENTIFIER (see Section 12.8 on page 241);

• the lexical token localvaluereference in the macro notation starts
with a lower-case letter in X.208:1988 but with an upper-case letter
in ISO 8824:1990 (see Chapter 16);

• the technical corrigendum (whose final edition is that of April
1991), which introduces the symbol “:” in the notation of a value
of type CHOICE (see Section 12.6 on page 235) or ANY (see Sec-
tion 12.8 on page 241) is not taken into account by X.208:1988;
this technical corrigendum makes the updating of every existing
specification necessary. This, however, could not be prevented
since, without changing the ASN.1 grammar, parsing specifica-
tions would have been impossible.

Since 1998, ISO and ITU-T have jointly conceived and published
their documents, thereby avoiding the tricky problem of consistency
mentioned above.

6.3.4 The 1994 edition

A new edition of the standard called ASN.1:1994 (1994 is the year of the
final draft but not its publication year) was adopted by voting at ISO
in late 1995. Due to numerous additions and the introduction of new
concepts, it was divided into 4 parts:

• ITU-T Rec. X.680 (1994) | ISO/IEC 8824-1:199518: Specification
of Basic Notation,

• ITU-T Rec. X.681 (1994) | ISO/IEC 8824-2:1995: Information
Object Specification,

• ITU-T Rec. X.682 (1994) | ISO/IEC 8824-3:1995: Constraint
Specification,

• ITU-T Rec. X.683 (1994) | ISO/IEC 8824-4:1995: Parameteriza-
tion of ASN.1 Specifications,

18The publication years are different between ISO and ITU-T, but the two docu-
ments are similar.

64 ASN.1 – Communication between Heterogeneous Systems

that would, a few months later lead to two amendments and one tech-
nical corrigendum:

• ITU-T Rec. X.680/Amd.1 (1995) | ISO/IEC 8824-1:1995/Amd.1:
Rules of Extensibility,

• ITU-T Rec. X.680/Corr.1 (1995) | ISO/IEC 8824-1:1995/Corr.1:
Technical Corrigendum 1,

• ITU-T Rec. X.681/Amd.1 (1995) | ISO/IEC 8824-2:1995/Amd.1:
Rules of Extensibility.

The main differences and new concepts are the following:

• the identifiers mantissa, base and exponent appear in the definition
of REAL values;

• the identifiers of SET or SEQUENCE components and those of CHOICE

alternatives become mandatory to avoid ambiguities when defining
values of these types;

• types can be tagged automatically with the clause AUTOMATIC TAGS

inserted in the header of the module;

• the identifiers of an ENUMERATED type can be numbered automati-
cally;

• the constructed types (SEQUENCE, SET, CHOICE) and some subtype
constraints can be declared as extensible using the “...” symbol
(called extension marker), which enables communication between
two machines that do not share the same protocol version (see
Section 12.9 on page 244): the machine that receives too much
information or not enough compared to what was expected can
manage the difference:

ExtensibleType ::= SEQUENCE { component1 Type1,

... }

ExtensibleConstraint ::= INTEGER (1..5, ...)

6 - History 65

• the exception marker “!” indicates error codes that should be used
by the communicating application when receiving data that do not
comply with an extensible type definition (see on page 247):

ExtensibleType ::= SEQUENCE { component1 Type1,

...! exc-extended-type }

exc-extended-type INTEGER ::= 3

• set combination allows unions (UNION), intersections
(INTERSECTION) and exclusions (EXCEPT) of subtype constraints
(see Section 13.11 on page 285):

ISO-10646-String ::= BMPString (FROM (Level2 ^

(BasicLatin | HebrewExtended | Hiragana)))

• every concept (type, value, information object...) can be parame-
terized to generalize them with respect to their different uses and
avoid equivalent definitions (see Chapter 17);

• new character string types such as UniversalString and BMPString

can encode all the alphabets of the [ISO10646-1] or [Uni96] stan-
dards (see Section 11.10 on page 183);

• new presentation context switching types like EMBEDDED PDV (a more
functional definition of the EXTERNAL type, whose definition has also
been improved) and CHARACTER STRING (for negotiating any char-
acter set) are introduced (see Chapter 14);

• macros are removed19 because they were poorly documented thus
badly used and impossible to automatize in all their generality (see
Chapter 16); these are replaced by a new concept of information
object class whose definition is unambiguous, easier to understand
and handier to use20 (see Chapter 15):

MY-ATTRIBUTE ::= CLASS {

&id OBJECT IDENTIFIER,

&Type,

&other-field OTHER-CLASS OPTIONAL }

WITH SYNTAX { &id OF TYPE &Type

[ASSOCIATED WITH &other-field] }

19In fact, the text is transferred in an annex of the standard to preserve a means
of reading and understanding obsolete specifications.

20Except a couple of curly brackets, the syntax of macro instances is in general
exactly the same as that of their equivalent information objects.

66 ASN.1 – Communication between Heterogeneous Systems

these information object classes and information objects constitute
the main contribution of the 1994 edition;

• constraints on information object class fields are introduced; they
allow in particular to represent the ANY DEFINED BY type that could
not be automatically taken into account by a compiler even when a
table describing the associations was included in comments within
the module (see Section 12.8 on page 241):

MyAttributes MY-ATTRIBUTE ::=

{ attrib1 | attrib2 | attrib3 }

MyAttribute ::= SEQUENCE {

&type MY-ATTRIBUTE.&id({My-Attributes}),

&value MY-ATTRIBUTE.&Type({My-Attributes}{@type}) }

• two frequently used information object classes (TYPE-IDENTIFIER
and ABSTRACT-SYNTAX) are standardized together with the INSTANCE

OF type.

The encoding rules standard is divided into two parts (and a techni-
cal corrigendum!):

• ITU-T Rec. X.690 (1994) | ISO/IEC 8825-1:1995: ASN.1 En-
coding Rules: Specification of Basic Encoding Rules, Canonical
Encoding Rules, and Distinguished Encoding Rules,

• ITU-T Rec. X.690/Corr.1 (1995) | ISO/IEC 8825-1:1995: Techni-
cal Corrigendum 1,

• ITU-T Rec. X.691 (1995) | ISO/IEC 8825-2:1995: ASN.1 Encod-
ing Rules: Specification of Packed Encoding Rules,

which officialize the canonical encoding rules (necessary for encrypted-
data transmission for example), the distinguished encoding rules (used
mainly by the X.500 directory) and the packed encoding rules (used more
and more for multimedia data transfer) that are discussed in Part III
from page 391 onwards.

In July 1995, John Larmouth proposed a contribution to remove
ambiguities from the standard and to start defining compatibility rules
between types. The initial goal of the proposal was to clearly define
what is semantically correct in ASN.1 to prevent software designers from
taking interpretations of the standard. The bottom-line idea was to

6 - History 67

clarify the meaning to be given to “should be of the same type as”,
which is frequently used in the standard and does not always say whether
the types should be tagged, constrained... Unfortunately called ‘formal
model’ at first, its name was changed afterwards for ‘semantic model’.

In May 1996, during an ISO meeting at Kansas City, it was decided
that:

• only one insertion point should be allowed in extensible types and
a second extension marker “...” is now permitted (in which case
the insertion point is located before the second marker);

• successive levels of extensions must be surrounded by double square
brackets “[[” and “]]”:

Record ::= SEQUENCE {

userName VisibleString,

password VisibleString,

...,

[[lastLoggedIn GeneralizedTime OPTIONAL,

minutesLastLoggedIn INTEGER -- version 1

]],

[[certificate Certificate -- version 2

]],

... }

• the definition of the registration tree and that of its first arcs (iso,
itu-t and joint-iso-itu-t) have moved to the [ISO9834-1] stan-
dard;

• the semantic model should be rewritten before publication as an
amendment;

• the ‘millennium bug’ for the UTCTime type is addressed (see Sec-
tion 11.17 on page 202);

• the work on global parameters was given up because of lack of
interest from the users and the other standardization groups; the
idea was originally to avoid fastidious repetitions of parameters fre-
quently used in a given specification (for example, the boundaries
of an integer interval);

68 ASN.1 – Communication between Heterogeneous Systems

• the study concerning dynamically constrained types should be pur-
sued21: such special parameters used only by PER could be in-
serted between the symbol “::=” and the type assignment’s left-
hand side; these parameters’ values are transmitted during com-
munication of the encoded value and provide, for instance, an ef-
ficient encoding for an array:

My-test ::= { OBJECT IDENTIFIER abstract-syntax,

OBJECT IDENTIFIER transfer-syntax,

INTEGER min-length,

INTEGER max-length }

SEQUENCE OF CHARACTER STRING

(SIZE (min-length.. max-length))

(WITH COMPONENTS {...,

identification (WITH COMPONENTS {

syntaxes ({abstract abstract-syntax,

transfer transfer-syntax})})})

6.3.5 The 1997 edition

In May 1997, considering the important number of amendments for each
part of the ASN.1:1994 standard as well as those still in progress, the
working group propose a new version in order to make the specifier’s job
easier (it always proves difficult to obtain all the numerous amendments
from the standardization organizations and one should always be reluc-
tant to manual cut/pastes for updating the standard document since
these are prone to error).

Compared to the 1994 version, the new release, called ASN.1:1997,
features the following changes:

• the registration tree definition moves to [ISO9834-1];

• the second extension marker and the version double square brack-
ets are inserted in the types SEQUENCE, SET and CHOICE, and a tu-
torial on extensibility is included in the appendices;

• the UTF8String type is defined (see Section 11.12 on page 190);

• the appendices concerning the ANY type and the macros have been
removed.

21See documents ISO/IEC JTC 1/SC 21 N 9735, N 10999, N 11001, N 10423.

6 - History 69

After the reorganization of JTC 1, SC 21 was dissolved in late 1997.
The standardization activities for ASN.1 joined SC 33 (‘Distributed Ap-
plications Services’) with ODP, ODMA, X.400, X.500, Enhanced LO-
TOS, Transaction Processing, Systems Management and the OSI Ap-
plication layer protocols. Peter Furniss was appointed OSI maintenance
rapporteur22 in SC 33, which means that he is in charge of the above
standards that are in a stable state to avoid developping them in any
ISO working group (nevertheless note that in spite of this, ASN.1 still
has its own Rapporteur group23).

In January 1998, an editing meeting on ASN.1 semantic model was
organized in Manchester (UK). John Larmouth had completely rewritten
his contribution to the model and refined it, removing all that did not
deal with type compatibility. Having done this, the group concluded
with the results presented in Section 9.4 on page 121.

At the end of the first semester 1998, the (still) new SC 33 was
dissolved since no international organization volunteered for the Secre-
tariat. Thus ASN.1 joined the SC 6 (‘Telecommunications and Informa-
tion Exchange Between Systems’), and more specifically WG 7 that dealt
with the layers 3 and 4 of the OSI model, with X.400 and with X.500
(see Figure 6.2 on page 56). The ASN.1 Rapporteur group now manage
by themselves the defect reports, which are not taken into account in
the context of OSI maintenance (see footnote 22).

The sub-committee SC 6 of ISO keep in touch with the ITU-T study
group SG VII, which facilitates common work on ASN.1.

In January 1999, a meeting was organized in Lannion (France) for
ten days. Among the numerous topics, we can mention:

• the progression of an amendment that would include the semantic
model (see Section 9.4 on page 121) as Annex F of the [ISO8824-1]
standard;

• the withdrawal of the dynamically constrained types (see on
page 67) because their power did not necessarily make up for their

22The ASN.1 maintenance web page is at http://www.furniss.co.uk/maint/asn/. It
contains all the amendments and defect reports for each part of the standard. Spec-
ifiers may find there the most up-to-date (and valid!) documents.

23This working group is now open to everyone, provided one’s action remains re-
stricted to discussions on the standards and corrections of the errors it may contains
(it is not necessary to stand in for a National Body any more).

http://www.furniss.co.uk/maint/asn/

70 ASN.1 – Communication between Heterogeneous Systems

complexity and despite their undeniable interest for a lot of com-
municating applications, it seemed difficult to standardize them
without prototyping beforehand;

• the creation of the RELATIVE-OID type for relative object identifiers
(see Section 10.9 on page 167);

• the investigation on introducing the underscore “ ” as an equiva-
lent for the dash “-” in references and identifiers to homogenize
ASN.1 labelling with that of other formal notations (see footnote 1
on page 100 and Section 23.1 on page 476);

• the correction of some defect reports;

• a proposition for defining a new formalism, called encoding control,
associated with ASN.1, which would allow the user to specify other
encoding rules or to overload existing standardized encoding rules
(like BER, PER...) for the needs of a specific domain or application
(see Section 21.6 on page 459).

In July 1999, the working group met in Geneva while an ITU-T
SG VII/WP 5 meeting was being held at the same time. The follow-
ing documents prepared during the Lannion meeting were finalized for
approval by ITU-T in July 1999 (their approval by ISO is planned for
February 2000):

• the semantic model presented in Section 9.4 on page 121 is subject
to three amendments:

– ITU-T Rec. X.680 (1997)/Amd.2 (1999) | ISO/IEC 8824-
1:1998/Amd.2,

– ITU-T Rec. X.681 (1997)/Amd.1 (1999) | ISO/IEC 8824-
2:1998/Amd.1,

– ITU-T Rec. X.683 (1997)/Amd.1 (1999) | ISO/IEC 8824-
4:1998/Amd.1;

• the new RELATIVE-OID type of relative object identifiers (see Sec-
tion 10.9 on page 167) introduces three amendments:

– ITU-T Rec. X.680 (1997)/Amd.1 (1999) | ISO/IEC 8824-
1:1998/Amd.1,

6 - History 71

– ITU-T Rec. X.690 (1997)/Amd.1 (1999) | ISO/IEC 8825-
1:1998/Amd.1,

– ITU-T Rec. X.691 (1997)/Amd.1 (1999) | ISO/IEC 8825-
2:1998/Amd.1;

• and four technical corrigenda clarify new points of the standard:

– ITU-T Rec. X.680 (1997)/Corr.1 (1999) | ISO/IEC 8824-
1:1998/Corr.1,

– ITU-T Rec. X.681 (1997)/Corr.1 (1999) | ISO/IEC 8824-
2:1998/Corr.1,

– ITU-T Rec. X.690 (1997)/Corr.1 (1999) | ISO/IEC 8825-
1:1998/Corr.1,

– ITU-T Rec. X.691 (1997)/Corr.1 (1999) | ISO/IEC 8825-
2:1998/Corr.1.

All the material aforementioned has already been taken into account
in this text.

In addition, two new work items were created and may lead to new
standards in 2001:

• one about the concept of encoding control (see Section 21.6 on
page 459);

• another about the encoding rules for XML called XER and the
mapping between ASN.1 types and XML Schema datatypes (see
Section 21.5 on page 458).

In October and December 1999, the ASN.1 working group held two
meetings in Somerset (New Jersey, USA). Three main issues were dis-
cussed: supporting XML in ASN.1, encoding control notation and ex-
amination of a few defect reports submitted by AFNOR. These defect
reports will give rise to some technical corrigenda on the standard sec-
tions involved.

In March 2000, a meeting was held at the ITU-T headquarters in
Geneva. It mainly focused on the encoding control notation and the
production of technical corrigenda among which we can find:

• [ISO8824-1DTC2], which allows the exception marker “!” after
the extension marker “...” in an ENUMERATED type and introduces
the clause “EXPORTS ALL;”;

72 ASN.1 – Communication between Heterogeneous Systems

• [ISO8824-1DTC3], which allows the decimal notation to define
REAL values;

• [ISO8824-1DTC4], which defines a subtype constraint based on
regular expressions introduced by the keyword PATTERN that can be
applied on the character string types (see Section 13.7 on page 271);

• [ISO8824-3DTC2], which defines a subtype constraint introduced
by the keywords CONTAINING and ENCODED BY that can only apply
to the types BIT STRING and OCTET STRING (see Section 13.10 on
page 283).

Other ASN.1 meetings have been planned every other month for the
year 2000: they will mostly be dedicated to the new ECN notation (see
Section 21.6 on page 459).

6.4 Compatibility between the 1990 and
1994/1997 versions

The participants of the July 1997 meeting in London and the ITU-T
members agreed that the ASN.1:1990 standard should be removed from
ISO and ITU-T proceedings. This question was very much debated
among the members of other standardization groups partly because it
seemed difficult to remove the edition of a standard that was quoted in
a significant number of other standards. Moreover, as some standards
are only being maintained without a working group’s being dedicated to
them, it proves impossible to re-write them completely.

Even if most of the Application Layer standards are being updated
to comply with ASN.1:1997, it is very unlikely that all specifiers will
adapt the existing modules (and unfortunately many questions related
to the ANY DEFINED BY type of ASN.1:1990 on various newsgroups on the
Internet bear out this hypothesis). As a consequence, the SC 33 decided
to maintain the ASN.1:1990 standard while strongly recommending the
migration towards ASN.1:1997 as much as possible and advising the
designers to use it for all new specifications.

We now explain how modules that have different ASN.1 versions can
fit in the same specification and we describe the actions to be undertaken
for updating the ASN.1:1990 modules into ASN.1:1994/97.

6 - History 73

6.4.1 Composition rules of the two versions

The following rules are extracted from [ISO8824-1, annex A]:

• any module should entirely conform to ASN.1:1990 only or to
ASN.1:1994/97 only; the specifier should indicate for each module
the version used by means of comments such as:

-- version BIT STRING { v1990(0), v1994(1),

-- v1997(2) } ::= v1994

As a result, if some part of a module needs to be updated, this
should be divided into two separate modules.

• A module that conforms to ASN.1:1990 can import ASN.1:1994/97
types or values (only) if these types could as well be written
in ASN.1:1990 (for example it is possible to import SEQUENCE or
PrintableString types, but it is impossible for a UTF8String type);
extensible types cannot be imported; a tool that conforms to
ASN.1:1990 is very unlikely to support imports of structured types
from a module featuring the AUTOMATIC TAGS clause in its header.

• A module written in ASN.1:1994/97 cannot import macros; if
SEQUENCE, SET or CHOICE types are imported, value definitions can
be written only for types in which all the identifiers appear and
for those which do not use ANY types; in the same way, the WITH

COMPONENTS subtype constraint can be used only for components
preceded by an identifier.

6.4.2 Migration from ASN.1:1990 to ASN.1:1997

Since the ASN.1:1994 and ASN.1:1997 standards benefit from real im-
provements compared to the 1990 version, we highly recommend to up-
date ‘old’ specifications. The following rules are extracted from
[ISO8824-1, annex A]:

1. every component of a SEQUENCE, SET or CHOICE type must have an
identifier that must be used in the value definitions of these types;

2. the mantissa, base and exponent identifiers must be added to every
value of type REAL and base should be restricted 2 or 10 as much
as possible;

74 ASN.1 – Communication between Heterogeneous Systems

3. the ANY and ANY DEFINED BY types must be replaced by a refer-
ence to an information object class field, and the association table
of each ANY DEFINED BY type must be replaced by an information
object set (see footnote 15 on page 343);

4. try and insert the AUTOMATIC TAGS clause in the module header and
remove the tags that become useless;

5. try and replace the character string types (GraphicString in par-
ticular) by BMPString or UniversalString, even CHARACTER STRING;
in this case, unfortunately, the encoding is not compatible and
such changes induce a new version for the specification;

6. each macro definition should be replaced by an information object
class (the WITH SYNTAX clause offers a user-defined syntax almost
similar to the macro’s), a parameterized type or a parameterized
value as appropriate (see Section 16.7 on page 374);

7. check if the uses of EXTERNAL can be improved with the same en-
coding when substituting them with the EMBEDDED PDV type for
example.

These few modifications ensure better readability and upgradeability
for the specification; they also make easier the maintenance and automa-
tion by ASN.1 compilers. Note that the main part of the updating can
be carried out with no change in the encoding, so that interworking is
preserved (in this case the two modules can keep the same object iden-
tifier as explained on page 163).

The advantages and procedures for the upgrade from ASN.1:1990 to
ASN.1:1994/97 have also been detailed in a document coming out of the
ITU-T SG VII meeting in Geneva in December 1997. We reproduce it
below as directions for use for the specifier:

• What is the difference between X.208/X.209 and the X.680 & X.690 se-
ries of standards?
The main difference is that the multitude of defect reports that were
issued against X.208 have been corrected. With X.208 there were many
ambiguities in the notation that made it possible to write ASN.1 mod-
ules which when implemented results in non-interoperability and even
though both peers are fully conformant. The most visible manifestations
of these bug fixes are the replacement of the macro notation and ANY/ANY

6 - History 75

DEFINED BY types, change in the CHOICE value notation, and the manda-
tory presence of identifiers in the definition of SET, SEQUENCE and CHOICE

types.

• What is the difference between the X.680 & X.691 series of standards
adopted in 1994 versus 1997?
The X.680 & X.691 series of standard adopted in December 1997 (re-
ferred to below as ASN.1:1997) is a merge of the base version of the 1994
standard and the corrigenda and amendments that were issued between
1994 and 1997. This includes notation to extend types (“...”) and the
introduction of the character string type, UTF8String.

• What are some benefits to conforming to ASN.1:1997?
Greater readability, precision, flexibility and ease of implementation. For
example, when macros are used in X.208 ASN.1 modules, you cannot tell
what the macro does without its author having to describe its behavior
to you. With ASN.1:1997 the notation is much more precise, making
this unnecessary. Indeed, the ASN.1:1997 replacement syntax for ANY

DEFINED BY (now called an open type) and macros such as OPERATION is
so much better that applications can be written more quickly, simply and
in significantly fewer lines of code compared to when X.208 is employed.
With the ASN.1:1997 syntax, it is possible for encoders/decoders to fully
decode a message, including open types nested in open types nested in
open types... (i.e. ANY nested in ANY nested in ANY...), all via a single call
to the encoder or decoder, and without any custom modifications to the
ASN.1 to accomplish this. Contrast this to the current approach which
either requires you to repeatedly call the encoder/decoder for each level
of ANY that is to be encoded or decoded, or which requires you to make
custom modifications to the ASN.1 and utilize special ASN.1 tools that
understand such customizations.

• Will conformance to ASN.1:1997 increase the complexity of my applica-
tion?
No. However, it can simplify your application and is less likely to result
in protocol errors.

• Will conformance to ASN.1:1997 alter the encoding of messages (the bits
on the wire)?
No. All applications written to X.208 can be converted to X.680 & X.683
without affecting encodings.

• Do we have to change already existing applications that use X.208/X.209
if our application standard is changed to use ASN.1:1997?

No, there is no need to change existing applications to use ASN.1:1997,
for how you choose to implement your application is a local matter. The
upgrade is a change in the standards, not the implementation. Consider
the fact that today your implementation is considered fully conformant

76 ASN.1 – Communication between Heterogeneous Systems

so long as its messages are properly encoded/decoded and it correctly
follows all aspects of the protocol it implements, regardless of whether
you hand-encode your messages or use an ASN.1 toolkit. Similarly, if
one peer chooses to continue using their already deployed application
that uses X.208/X.209, and the other peer uses the ASN.1:1997 version
of that application’s ASN.1 specification, it will be impossible for either
peer to know what version of ASN.1 the other is using. This is because
any ASN.1 specification converted from X.208 to X.680 & X.683 yields
identical encodings.

• If the application that I wish to implement uses ASN.1:1997, will it be
conformant if I change the ASN.1 to X.208 so as to reuse an ASN.1
toolkit that I already have?
Yes, it will be conformant. Today very few implementations use ASN.1
from application standards without performing some sort of customiza-
tion on them so they can be better handled by whatever tool they use.
Nonetheless, they have always been considered conformant so long as
they fully obey the application protocol. Similarly, if you modify an
ASN.1 specification written according to ASN.1:1997 so as to reuse your
ASN.1 toolkit (or for whatever reason), your application will be confor-
mant as long as it obeys the application protocol. Note though that
the way you currently take care to avoid introducing errors when cus-
tomizing your ASN.1 is the same that you will need to take care to
avoid introducing errors if you choose to alter your ASN.1 specifica-
tion from ASN.1:1997 to X.208. Since ASN.1:1997 is more descriptive
than X.208, little or no customizations are required to use it with con-
forming ASN.1:1997 toolkits, hence chances of introducing errors due to
customizations are reduced when using ASN.1:1997. Contrast this with
X.208 specifications for which customizations are often required due to
the many ambiguities in the X.208 grammar.

• What do I need to change in order to conform to ASN.1:1997?
See [ISO8824-1] clause A.3, “Migration to the Current ASN.1 Notation”,
and Annex H, “Superseded Features”, for details. In a nutshell, the main
changes you will need to make are:

1. ensure that all the components of SET, SEQUENCE and CHOICE have
identifiers.

2. Include a colon after the identifier in CHOICE values.

3. Change ANY and ANY DEFINED BY to use the more descriptive open
type notation (see Annex H of X.680).

4. Change the macro notation to the information object class notation
(e.g., if OPERATION is used) or parameterized types (e.g., if SIGNED

is used).

6 - History 77

• Is there any help that SG 7 can provide to assist in our better under-
standing ASN.1:1997 and in modifying our ASN.1 modules to conform
to ASN.1:1997?
Yes. To assist you in changing your ASN.1 modules to conform to
ASN.1:1997 we have arranged the following:

1. A one day hands-on (no cost) tutorial on the differences between
X.208 and ASN.1:1997, details on the benefits of ASN.1:1997, how
to convert from X.208 to ASN.1:1997, etc., for editors and whomever
else is interested.

2. The ISO/IEC ASN.1 Rapporteur, John Larmouth, has volunteered
to provide whatever assistance is needed to convert your X.208
specifications to ASN.1:1997, including doing the entire editing job
if you do not have an editor available to do the work. John’s email
address is J.Larmouth@salford.ac.uk.

3. The ASN.1 Editor, Bancroft Scott, has volunteered to check the
syntax of your ASN.1 specification to ensure that it conforms to
ASN.1:1997, and to answer any questions concerning ASN.1:1997
and converting to it. Bancroft’s email address is baos@oss.com.

4. OSS Nokalva has agreed to make the OSS ASN.1 Tools available at
no cost to editors to assist them in verifying that their ASN.1:1997
specifications are valid. Email: baos@oss.com.

With these rules, the standards ACSE [ISO8650-1], Presentation
[ISO8823-1] and MHS (ITU-T X.400 series), for example, were rewrit-
ten in ASN.1:1994/97 and the version described in the ASN.1:1990 were
removed from the ISO and ITU-T catalogs. The ROSE [ISO9072-2]
standard and the directory ITU-T X.500 series have been rewritten in
ASN.1:1997 but their ASN.1:1990-conformant editions are still available.
The updating of the X.700 series of network management standards is
now over and should be approved in February 2000.

6.4.3 Migration from ASN.1:1994 to ASN.1:1990

This go-backward case (definitely not recommended!) can unfortunately
occur when tools have not been updated for ASN.1:1994. We shall not
discuss the matter but refer to [ETSI295].

J.Larmouth@salford.ac.uk
mailto:J.Larmouth@salford.ac.uk
baos@oss.com
mailto:baos@oss.com
baos@oss.com
mailto:baos@oss.com

78 ASN.1 – Communication between Heterogeneous Systems

Chapter 7

Protocols specified in
ASN.1

Contents

7.1 High-level layers of the OSI model 80

7.2 X.400 electronic mail system 81

7.3 X.500 Directory . 83

7.4 Multimedia environments 84

7.5 The Internet . 86

7.6 Electronic Data Interchange Protocols (EDI) 88

7.7 Business and electronic transactions 89

7.8 Use in the context of other formal notations 89

7.9 Yet other application domains 91

What a tremendous advantage not to have
done anything, but this should be enjoyed
with moderation.

Antoine Rivarol.

As a conclusion for this introductory part, we describe a few applica-
tion domains of the ASN.1 notation. Though wordy it might seem, this
chapter is not meant to be a comprehensive description of all the pro-
tocols specified with ASN.1 and many other application domains will
undoubtedly emerge in the near future.

80 ASN.1 – Communication between Heterogeneous Systems

7.1 High-level layers of the OSI model

As we shall see on page 361, the Presentation Protocol Data Unit (PPDU,
6th layer) is specified with ASN.1 [ISO8823-1]. Some PPDUs (particu-
larly those of connection denial and connection acceptance for Presenta-
tion) are described in the module ISO-8823-PRESENTATION. Each PPDV is
transmitted afterwards as a parameter of a Session primitive (5th layer,
see Figure 3.1 on page 18).

The Application layer (7th layer) is divided into service elements,
that are standardized for being often used by communicating applica-
tions. The data transfer brought about by the service elements are
necessarily specified in ASN.1. We can mention:

• the Association Control Service Element (ACSE, [ISO8650-1] stan-
dard), which manages the establishment and termination of the
connections between two distant applications;

• the Commitment, Concurrency, and Recovery service element
(CCR, [ISO9805-1] standard), which provides a number of coop-
eration and synchronization task functions in a distributed envi-
ronment: it makes sure the operation left to a remote application
(a database update, for instance) is executed properly, it ensures
the information coherence when several processes are running in
parallel and re-establishes a clean environment if errors or failures
occur;

• the Remote Operation Service Element (ROSE, [ISO13712-1] stan-
dard): a very general client-server mecanism, which hides from the
application programmer the existence of a communication between
processes; it can ask the remote application to execute operations
or to collect results and errors; each interface’s operation is de-
scribed with ASN.1 as an information object of the OPERATION class;
ROSE provides a common and standardized method for carrying
requests and answers laying by specific gaps in the APDU to be
filled in dynamically during communication;

• the Reliable Transfer Service Element (RTSE, [ISO9066-2] stan-
dard) which can transfer safely and permanently APDUs by tak-
ing over the communication where the transfer was interrupted or
warning off the sender that the transfer is not possible.

7 - Protocols specified in ASN.1 81

These generic service elements can then be combined more easily to
build up applications for which data transfers are also specified in ASN.1
such as:

• the File Transfer, Access, and Management service (FTAM,
[ISO8571-4] standard) for transferring files or programs between
heterogeneous systems. It also provides an access to the files to
read or write, to change the rights they have been attributed, or to
change their size and content description (equivalent to the Unix
ftp);

• the Virtual Terminal service (VT, ISO 9041 standard) for con-
trolling a terminal that screen, keyboard and some peripheral like
a printer for example, without the application knowing all the
types of terminal which it may deal with (equivalent to the Unix
telnet);

• the Job Transfer and Manipulation service (JTM, ISO 8832 stan-
dard) for executing data processing from a remote machine (a
complex computation on a powerful computer for instance), su-
pervising it and getting the results.

7.2 X.400 electronic mail system

E-mail is probably one of today’s most famous information technology
applications. It is therefore worthwhile describing what is meant by
this expression. As exposed in our history review on page 60, it had a
most important role for ASN.1 because the X.208 standard (ASN.1 first
edition) directly resulted from the X.409:1984 notation, which had been
designed for representing the various parts of an e-mail. Indeed, as the
eighties saw the use of e-mail become more common, the CCITT was
led to standardize an OSI-compliant e-mail service.

Today, the most industrialized countries have an e-mail public service
that conforms to the X.400 standard service1. Such a service promotes
the development of communicating applications particularly in office

1The equivalent ISO standard is called MOTIS (Message Oriented Text In-
terchange System) recorded as ISO 10021. Information about the X.400 stan-
dard services can be found at http://ftp.net-tel.co.uk/iso-iec-jtc1-sc33-wg1/ and
http://www.alvestrand.no/x400/.

http://ftp.net-tel.co.uk/iso-iec-jtc1-sc33-wg1/
http://www.alvestrand.no/x400/

82 ASN.1 – Communication between Heterogeneous Systems

Envelope:

Originating address
List of addressees and
control indicators
Type of content
Priority
Delivery date
...

Context:

Header:
From:

To:

Cc:

Subject:

...

Body

(interpreted
by the user)

Body

...

...

Figure 7.1: Structure of an X.400 message

automation and computerized documents (see Section 7.6 on page 88).
The X.400 standards define the message format, given in Figure 7.1, and
the exchange protocol but the message content is up to the user, and
therefore outside the boundaries of the OSI world.

This standard series, which consists of about 5,000 lines of ASN.1
notations was completely rewritten to be compliant with all the func-
tionalities of the ASN.1:1994 edition. The extract in Figure 7.2 on the
next page is the ASN.1 definition (slightly simplified) of the envelope
of message delivery according to Figure 7.1. The description of ASN.1
concepts in the previous chapter should be sufficient to make out the
data types of this envelope.

Compared to the Simple Mail Transfer Protocol (SMTP), the e-mail
protocol on the Internet, a BER-encoded X.400 message is more compact
and offers more security since it is possible to ask for an acknowledge-
ment of receipt and reading. On the other hand, SMTP fans may argue
that BER encoding, which requires a decoder, is not as readable as the
SMTP ASCII encoding, which transfer characters ‘as is’.

7 - Protocols specified in ASN.1 83

MessageSubmissionArgument ::= SEQUENCE {

envelope MessageSubmissionEnvelope,

content Content }

MessageSubmissionEnvelope ::= SET {

originator-name OriginatorName,

original-encoded-information-types

OriginalEncodedInformationTypes OPTIONAL,

content-type ContentType,

content-identifier ContentIdentifier OPTIONAL,

priority Priority DEFAULT normal,

per-message-indicators PerMessageIndicators

DEFAULT {},

deferred-delivery-time [0] DeferredDeliveryTime

OPTIONAL,

per-recipient-fields [1] SEQUENCE

SIZE (1..ub-recipients) OF

PerRecipientMessageSubmissionFields }

Figure 7.2: An extract of ASN.1 for an X.400 message

7.3 X.500 Directory

The directory (ITU-T X.500 recommendation series or ISO 9594 stan-
dards)2 is an international and distributed database that can store any
kind of information about persons, organizations, communicating ap-
plication entities, terminals, mailing lists, etc. It is often described in
parallel with the X.400 e-mail because it provides an interactive search
of subscriber addresses but also other items of information like phone
number, address, favorite medium (e-mail, fax, phone...), photography,
public key encoding...

The X.500 directory is a hierarchical database. Every node of this
international tree is identified with a number of standardized or locally
defined attributes; it can be referenced by a unique distinguished name,
which locates it within the tree. Powerful search requests using pattern
matching with the attributes’ values enable to implement the directory
with a user-friendly interface.

ASN.1 is fully used for the X.500 directory, particularly to spec-
ify the requests and the modification of the Directory Access Protocol
(DAP) attributes. Figure 7.3 on page 85 defines the information object
class ATTRIBUTE which allows a description of each attribute (data types,

2http://www.dante.net/np/ds/osi.html, http://www.cenorm.be/isss/Workshop/DIR/
Default.htm

http://www.dante.net/np/ds/osi.html
http://www.cenorm.be/isss/Workshop/DIR/
http://www.cenorm.be/isss/Workshop/DIR/Default.htm
Default.htm
http://www.cenorm.be/isss/Workshop/DIR/Default.htm

84 ASN.1 – Communication between Heterogeneous Systems

applicable comparison rules, usage) and the class MATCHING-RULE, which
is used to define compatibility rules between attributes (for example,
case-insensitive comparisons to differentiate names).

Of course, the class MATCHING-RULE only defines the comparison func-
tion interface, for their implementation is down to each provider of the
directory service.

For a more thorough description of the directory, the reader can refer
to [Cha96]. The information object classes ATTRIBUTE and MATCHING-RULE

above mentioned are used in Chapter 15. Finally it is worthwhile men-
tionning that the ASN.1 specifications of the X.500 service protocols are
being adapted for the Internet.

7.4 Multimedia environments

A growth industry because of the Web or digital phone networks, the
multimedia applications also benefit from standards formalized in ASN.1.
MHEG (Multimedia and Hypermedia information coding Expert Group3,
ISO 13522 standard) uses an object-oriented approach to describe the
representation of multimedia and hypermedia information for exchang-
ing it between applications (using the Distinguished Encoding Rules,
DER).

Numerous application domains for the MHEG standard are being
considered such as interactive digital TV programs, pay-per-view, simu-
lation games, tele-teaching, tele-shopping and many other services where
real-time transfer and a regular updating of many multimedia objects
are necessary.

There are eight MHEG object classes that are defined both in ASN.1
and in SGML (Standard Generalized Markup Language). These classes
can transparently exchange objects encoded in many different formats
(JPEG, MPEG, text...), including all proprietary formats. The MHEG
objects can be icons or buttons to trigger actions when clicked. They are
independent from the applications as well as from presentation supports.

In the domain of videoconferencing, which annual growth is huge
particularly because the productivity gains induced make it grow in
popularity among businessmen, the ITU-T T.1204 recommendation se-
ries describes a multithread architecture of data communication within

3http://www.fokus.gmd.de/ovma/mug/
4http://www.databeam.com/ccts/t120primer.html

http://www.fokus.gmd.de/ovma/mug/
http://www.databeam.com/ccts/t120primer.html

7 - Protocols specified in ASN.1 85

ATTRIBUTE ::= CLASS {

&derivation ATTRIBUTE OPTIONAL,

&Type OPTIONAL,

&equality-match MATCHING-RULE OPTIONAL,

&ordering-match MATCHING-RULE OPTIONAL,

&substrings-match MATCHING-RULE OPTIONAL,

&single-valued BOOLEAN DEFAULT FALSE,

&collective BOOLEAN DEFAULT FALSE,

&no-user-modification BOOLEAN DEFAULT FALSE,

&usage Attribute-Usage

DEFAULT userApplications,

&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

[SUBTYPE OF &derivation]

[WITH SYNTAX &Type]

[EQUALITY MATCHING RULE &equality-match]

[ORDERING MATCHING RULE &ordering-match]

[SUBSTRINGS MATCHING RULE &substrings-match]

[SINGLE VALUE &single-valued]

[COLLECTIVE &collective]

[NO USER MODIFICATION &no-user-modification]

[USAGE &usage]

ID &id }

Attribute ::= SEQUENCE {

type ATTRIBUTE.&id ({SupportedAttributes}),

values SET SIZE (1..MAX) OF

Attribute.&Type ({SupportedAttributes}{@type})}

MATCHING-RULE ::= CLASS {

&AssertionType OPTIONAL,

&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

[SYNTAX &AssertionType]

ID &id }

caseIgnoreSubstringsMatch MATCHING-RULE ::= {

SYNTAX SubstringAssertion

ID id-mr-caseIgnoreSubstringsMatch }

SubstringAssertion ::= SEQUENCE OF CHOICE {

initial [0] DirectoryString {ub-match},

any [1] DirectoryString {ub-match},

final [2] DirectoryString {ub-match} }

ub-match INTEGER ::= 128

Figure 7.3: Two information object classes defined in the X.500 directory

86 ASN.1 – Communication between Heterogeneous Systems

the environment of a multimedia conference. It describes the estab-
lishment of phone meetings regardless of the underlying networks and
the exchange of any format of information (binary files, fixed images,
notes...) during the meeting. The data protocol is obviously specified
in ASN.1 and the encoding compliant with the Packed Encoding Rules
(PER).

Many other protocols in multimedia are specified with ASN.1. For
example, audiovisual and multimedia systems (ITU-T H.200 series),
videophone over RNIS (ITU-T H.320 recommendation), real-time mul-
timedia communication over the Internet (ITU-T H.225, H.245, H.323
recommendation)5 and fax over the Internet (ITU-T T.38 recommenda-
tion)6 have been regularly mentioned in the press lately.

7.5 The Internet

In the booming Internet world (it is estimated that 25% of the tele-
phone traffic have moved on the Internet by 2003), ASN.1 has appeared
for quite a long time now in many Requests For Comments7 (RFC) that
specify the Net protocols. RFC 11898 (The Common Information Ser-
vices and Protocols for the Internet, CMOT and CMIP) and RFC 11579

(A Simple Network Management Protocol, SNMP) for example are two
alternative protocols allowing a network to control and evaluate the per-
formance of a remote network element.

Unfortunately, in retaining its space of freedom, the Internet Engi-
neering Task Force (IETF) has often let itself be entangled in liberal
usages of ASN.1. The main critics about RFC are the following:

• the systematical use of OCTET STRING to modelize ill-known data
or to avoid specifying too formally what they stand for;

• the definition of many macros and macro instances to represent se-
mantic links instead of information object classes and information
objects although no ASN.1 compiler properly takes into account

5http://www.openh323.org/standards.html, http://people.itu.int/∼jonesp/iptel/
6http://www.dialogic.com/company/whitepap/4631web.htm
7It is a fast way of proposing new standards for the Internet and receive comments

(http://www.rfc-editor.org/overview.html).
8http://www.faqs.org/rfcs/rfc1189.html
9http://www.faqs.org/rfcs/rfc1157.html,

http://www.simple-times.org, http://www.snmp-products.com/REF/ref.html

http://www.openh323.org/standards.html
http://people.itu.int/~jonesp/iptel/
http://www.dialogic.com/company/whitepap/4631web.htm
http://www.rfc-editor.org/overview.html
http://www.faqs.org/rfcs/rfc1189.html
http://www.faqs.org/rfcs/rfc1157.html
http://www.simple-times.org
http://www.snmp-products.com/REF/ref.html

7 - Protocols specified in ASN.1 87

the macro concept (on the other hand, no compiler of the public
domain does with the information object class concept unfortu-
nately);

• it does not clearly define the ASN.1 version it uses and mixes up
ASN.1:1990 and ASN.1:1994 features, which can result in tricky
compilations;

• the liberties they take with ASN.1 syntax and sometimes with
the BER encodign rules: this disrecpect any compilation by com-
mercial tools or any use of the generic encoder and decoder they
produce. This often leads to hand-made specification implemen-
tation.

Two important projects have been recently specified with ASN.1
even though the Internet community is generally quite reserved about
such specifications (mainly because they are tagged with the ISO and
OSI labels!).

Since its creation in 1992, the ANSI Z39.50 protocol (ISO 10163-1
standard)10 is specified in ASN.1 and encoded with BER. A variant pro-
tocol was used in the WAIS service (Wide Area Information Server) to
make all kinds of information accessible on the Internet (library catalogs,
directories, ftp archives, newsgroups, images, source codes, multimedia
documents). It provides facilities for keyword search, for extending a
search by including new criteria to be applied to the documents already
found and for downloading selected documents. The Z39.50 protocol is
mainly used in libraries and information centers because it is well-suited
for the note formats they deal with. New encoding rules called XER
(see Section 21.5 on page 458) are still under construction to promote
the use of this protocol on the Web.

The authentication and distribution systems Kerberos11 developed
by the Massachusetts Institute of Technology (MIT) is a software de-
signed for securing data exchanges within the network of a university or
an organization. Since its fifth version, the data transfers are specified
in ASN.1. Microsoft has already announced that this authentication
system would be supported by Windows NT 5r.

Similarly the Public Key Cryptography Standard PKCS12 no. 7
[RSA93] describes with ASN.1 the syntax of encrypted messages with

10http://mda00.jrc.it/z39.50/z39.50-asn1.html
11http://www.mit.edu/afs/athena/astaff/project/kerberos/www/
12http://www.rsa.com/rsalabs/pubs/PKCS/, http://www.rsa.com/rsa/developers/

http://mda00.jrc.it/z39.50/z39.50-asn1.html
http://www.mit.edu/afs/athena/astaff/project/kerberos/www/
http://www.rsa.com/rsalabs/pubs/PKCS/
http://www.rsa.com/rsa/developers/

88 ASN.1 – Communication between Heterogeneous Systems

digital signature encoded in BER. The standard was produced in 1991
jointly by a consortium of computer manufacturers and the MIT.

Finally, business and electronic transaction protocols described in
Section 7.7 on the next page, as well as multimedia communications
presented in the previous section, are now increasing on an unprece-
dented scale with the Internet.

7.6 Electronic Data Interchange Protocols (EDI)

The automation of exchange in the legal, economic and business domains
now removes needless manual data capture. In order to take advantage
of such practice, several standards offer information structures for the
documents exchanged.

The Office Document Architecture or ODA proposes to transmit in
the content of the e-mail the format tags in addition to the text itself
so that the addressee could browse the document according to the rep-
resentation required by the sender. It is particularly suited for office
procedures such as word processing, archives and document exchanges.

Specified in ASN.1, the exchanged format called ODIF (Office Doc-
ument Interchange Format, ISO 8613-5 standard or ITU-T T.415 rec-
ommendation), enables the transfer of the document description (letter,
report, invoice...) and their content (text, graphs, images...) via an
X.400 e-mail.

Recommendation ITU-T X.435 proposes an EDI e-mail system above
the X.400 e-mail. It is aimed at users of the EDIFACT standard for
business document exchange (see Section 24.5 on page 492) and other
common EDI syntaxes.

The Document Transfer And Manipulation standard (DTAM, ITU-T
T.431 recommendations) provides a service for processing, access, man-
agement and transfer of documents structured according to the ODA
architecture when associating two applications. This service is general
enough to cover a wide diversity of telematic application demands such
as the group IV fax (ISDN transmission, 5 seconds per page, colour op-
tion) and videotext sytems. These two standards are specified in ASN.1.

7 - Protocols specified in ASN.1 89

7.7 Business and electronic transactions

Another one of today’s booming area thanks to the generalization of
the Internet at home or at work, is that of electronic business13. In
this context, the transaction security must free up from the diversity
of payment media, networks and softwares, and ASN.1 accedes to these
requirements.

SET (Secured Electronic Transaction)14 is a standard made up jointly
by several american companies (Mastercard, Visa, American Express,
Netscape, IBM...) in order to secure financial exchange on the Internet.
It is based on the PKCS no. 7 standard of public encryption described
on page 87 and on the procedure [X.509] for the directory seen in Sec-
tion 7.3 on page 83. It provides the following services: confidentiality
of the information to the transaction, integrity of the transferred data,
authentication of the account owner and of the business party.

In order to benefit from the French specificity (France was the first
country where the use of chip-based cards, opposed to magnetic track-
based cards, were generalized) a national organization called GIE Cartes
Bancaires15, in charge of defining card specificities for that country,
developed a promising standard, adapted from the SET standard and
called C-SET16 (Chip-SET). Also specified in ASN.1, it relies on the
card itself to secure the transaction and therefore avoids exchanging
authentication certificate.

In the USA, the ANSI X.917 committee, which numbers more than
300 members (banks, investors, software companies, associations) is re-
sponsible for developing national standards to facilitate financial oper-
ations: electronic payment on the Internet, secured service for on-line
banks, business messages, fund transfers, etc. All the standards describ-
ing these data transfers are specified in ASN.1.

7.8 Use in the context of other formal notations

ASN.1 is the data typing language in three standard formal notations
that will be described more thoroughly in Chapter 23.

13http://www.ecom.cmu.edu/resources/elibrary/epaylinks.shtml
14http://www.setco.org/set specifications.html
15http://www.cartes-bancaires.com, http://www.visa.com/nt/ecomm/set/main.html
16http://www.europayfrance.fr/fr/commerce/secur.htm
17http://www.x9.org

http://www.ecom.cmu.edu/resources/elibrary/epaylinks.shtml
http://www.setco.org/set_specifications.html
http://www.cartes-bancaires.com
http://www.visa.com/nt/ecomm/set/main.html
http://www.europayfrance.fr/fr/commerce/secur.htm
http://www.x9.org

90 ASN.1 – Communication between Heterogeneous Systems

The Guidelines for the Definition of Managed Objects (GDMO,
[ISO10165-4] standard) are used to model system administration and
technical management aspects as managed objects made of attributes
(whose types are described in ASN.1) and actions that modify the at-
tributes’ values (the operation arguments and return values are also
typed in ASN.1).

System or network management ensures a reliable and continuous
functioning while optimizing the performance and make up for hardware
failures. Every part of a computer or telecommunication network can
be monitored: routers, queues, sensors, logs, software versions, clocks,
accounts...

The Common Management Information Protocol (CMIP,
[ISO9596-1] standard) in charge of the bi-directionnal dispatching
of all the management information (the managed objects) between the
manager and the agents is specified in ASN.1.

SDL (Specification and Description Language, ITU-T Z.100 recom-
mendation) formalizes various concepts of telecommunication networks:
signalling, switching network inter-operability, data processing, proto-
cols... SDL is a very popular language and its scope of action goes
beyond the telecommunication area.

It was at first related to the language ACT ONE for describing the
data types handled by the specification but afterwards turned to ASN.1
to take over the task thereby making the development of a protocol
easier: formalization, implementation, validation and tests. ASN.1 now
tends to gradually take over ACT ONE more and more often.

TTCN (Tree and Tabular Combined Notation, ISO 9646 standard) is
a test description language particularly convenient for protocol tests. It
can describe a collection of abstract tests (regardless of the architecture)
as PDUs or service primitives (see footnote 1 on page 22) without pay-
ing attention to the encoding. ASN.1 was included in TTCN in order
to make it possible to describe test sequences for the application layer
protocols; these sequences can be used even if the specification to be
tested is not written in ASN.1.

7 - Protocols specified in ASN.1 91

7.9 Yet other application domains

We conclude this chapter with an enumeration à la Prévert 18 of other
uses for ASN.1.

The forthcoming Aeronautical Telecommunication Network (ATN),
which should be operational in Europe around 2005, will be based on
OSI protocols. The information exchanged between planes and ground
control systems will be specified in ASN.1 and encoded in PER.

In the telecommunication domain, ASN.1 is essential although all the
branches have not adopted it yet. It is indeed used for mobile phones
(with the Mobile Application Part or MAP protocol for the GSM net-
works, or the third generation mobiles conform to the UMTS19 stan-
dard), the free phone numbers, the Integrated Services Digital Network
(ISDN), the intelligent networks (the Intelligent Network Application
Protocol, also called INAP, whose second capability set (CS2) contains
more than 250 pages of ASN.1 assignments and uses the X.500 direc-
tory definition), the Signalling System No. 7 (SS7) between switches
(signalling is an area where the use of ASN.1 should be generalized)...

The duality telephony/information technology, which allows commu-
nication between a phone system (such as a Private Automatic Branch
eXchange, PABX) with computing applications, is undergoing radical
changes, particularly in phone exchange centers whose productivity is
tremendously improved or in office automation where it can integrate in
a more homogeneous way all the computing services and products. The
Computer Supported Telecommunications Applications (CSTA20) stan-
dards specify the structure of the message exchanged between equip-
ments and computing applications in ASN.1 using a BER encoding.

The MMS (Manufacturing Message Specification, ISO 9506 stan-
dard) allows to control manufacturing without having to care about
the potential heterogeneity of equipments: robots, digitally controlled
machine tool, bespoke programmed automaton. It is used in exchanges
for selling or buying electricity in real time, for controls of paper mills,
for car assembly lines and for chemical or food factories.

18Other enumerations can be found at http://www.oss.com/rstand.htm,
http://www.inria.fr/rodeo/personnel/hoschka/baosmsg.txt and
http://www.inria.fr/rodeo/personnel/hoschka/ralphmsg.txt.

19http://www.umts-forum.org/, http://www.3gpp.org/
20http://www.etsi.org/brochures/stateart/huff.htm

http://www.oss.com/rstand.htm
http://www.inria.fr/rodeo/personnel/hoschka/baosmsg.txt
http://www.inria.fr/rodeo/personnel/hoschka/ralphmsg.txt
http://www.umts-forum.org/
http://www.3gpp.org/
http://www.etsi.org/brochures/stateart/huff.htm

92 ASN.1 – Communication between Heterogeneous Systems

The market of telematics applied to transport information and con-
trol systems21 will be booming for the next twenty years. The progress
of navigation systems by satellite, of digital cartography and mobile
telecommunications may enable optimizing the management of taxi or
public transport vehicle fleets and smooth the road traffic with intelli-
gent signals and information transmission to individual navigation sys-
tems. Some protocols of the intelligent transport domain are specified
in ASN.1 and encoded in PER (see Section 21.3 on page 456).

The Radio-Frequency IDentification (or RFID22) is implemented in
numerous industrial sectors (person or vehicle identification, stock man-
agement...). The electronic tags are made of miniaturized radio trans-
mitters that can be accessed from a few centimeters to several meters
far or through obstacles (thereby forbidding barcodes for instance). The
PER encoding seems to be an excellent answer to bandwidth problems
frequently encountered in this area.

In the USA, the National Center for Biotechnology Information
(NCBI) created GenBank23, a database featuring around four million
DNA sequences (DesoxyriboNucleic Acid). Everyday the american cen-
ter gives and receives DNA sequences from its European and Japanese
counterparts24. The National Library of Medicine also designed four
databases (Unified Medical Language System, UMLS25) whose exchange
format are specified in ASN.1. They describe scientific papers among
other things.

The ISO/CEI 7816-4 standard26 use a BER encoding for exchang-
ing data with integrated circuit(s) cards with contacts; one of today’s
application domain is the Social Security electronic card. The european
project Netlink on interworking social security card systems relies on
ASN.1 for describing the card’s data structures. The technical commit-
tee TC 25127 in charge of Health Informatics at the European Com-
mittee for Standardization (CEN) published the ENV 12018 standard
on “Identification, administrative, and common clinical data structure

21Some elements of information can be found at http://www.iso.ch/
meme/TC204.html or http://www.nawgits.com/icdn.html.

22http://www.aimglobal.org/technologies/rfid/resources/papers/
rfid basics primer.html

23http://www.ncbi.nlm.nih.gov/Web/Genbank/index.html
24ftp://ncbi.nlm.nih.gov/mmdb/specdocs/ncbi.asn
25http://www.nlm.nih.gov/research/umls/
26http://www.iso.ch/cate/d14738.html
27http://www.centc251.org/

http://www.iso.ch/
http://www.iso.ch/meme/TC204.html
meme/TC204.html
http://www.iso.ch/meme/TC204.html
http://www.nawgits.com/icdn.html
http://www.aimglobal.org/technologies/rfid/resources/papers/
http://www.aimglobal.org/technologies/rfid/resources/papers/rfid_basics_primer.html
rfid_basics_primer.html
http://www.aimglobal.org/technologies/rfid/resources/papers/rfid_basics_primer.html
http://www.ncbi.nlm.nih.gov/Web/Genbank/index.html
ftp://ncbi.nlm.nih.gov/mmdb/specdocs/ncbi.asn
http://www.nlm.nih.gov/research/umls/
http://www.iso.ch/cate/d14738.html
http://www.centc251.org/

7 - Protocols specified in ASN.1 93

for Intermittently Connected Devices used in healthcare” for which the
data structures are described in ASN.1.

It is now up to the reader28 to add on to the list other original ap-
plications of ASN.1 and even correct some inaccuracies in those already
in this chapter.

28By sending an e-mail to asn1@rd.francetelecom.fr.

asn1@rd.francetelecom.fr
mailto:asn1@rd.francetelecom.fr

94 ASN.1 – Communication between Heterogeneous Systems

Part II

User’s Guide
and

Reference Manual

Chapter 8

Introduction to the
Reference Manual

Contents

8.1 Main principles . 97

8.2 Editorial conventions . 98

8.3 Lexical tokens in ASN.1 100

Make everything as simple as possible,
but not simpler.

Albert Einstein.

The User’s Guide and Reference Manual constitute the main part of this
book. Using as many examples as possible we shall present all the fea-
tures of ASN.1. The chapters are ordered by increasing difficulty. Some
chapters can be discarded depending on your proficiency and experience
with ASN.1: see the reading directions of Figure 1 on page xxi.

8.1 Main principles

We have wanted this second part of the book to be both a User’s Guide
and a Reference Manual in order to comply with the largest audience’s
need. For doing so each section is systematically divided into two sub-
sections. The first, always called ‘User’s Guide’, is more particularly

98 ASN.1 – Communication between Heterogeneous Systems

aimed at the beginner since this is where we introduce the concepts of
ASN.1 and gradually increase the difficulty of our examples to span all
the possibilities offered by the notation. We often conclude with some
examples drawn from real protocols specifications. Once understood
what we explain in this first sub-section, the reader may start with the
second but we recommend to leave it aside at first.

The second sub-section is always called ‘Reference Manual’ and is
aimed at the proficient specifier or the programmer. It is not meant to
be read completely but to be referred to for looking up a particular point
of ASN.1 syntax or semantics. Indeed, this part relies on the ASN.1
grammar (presented in extended Backus-Naur notation) to detail, with
generally short rules, what is allowed or forbidden in the standard. These
few editorial conventions help to write semantic rules that are simpler
and easier to understand.

Though many rules have been reproduced in several sections to ob-
tain the information that is looked faster, train of these detailed de-
scriptions cannot be sequential or strictly top-down because grammar
productions and semantic rules frequently call one another (if necessary,
refer to the index on page 543 to find a specific production by its name).
The semantic rules obviously recall the clauses of the ASN.1 standards
but we have included in our descriptions many enlightments due to our
own experience, to discussions on newsgroups or electronic correspon-
dence with Bancroft Scott and John Larmouth, respectively editor and
rapporteur of the ASN.1 standard at ISO and ITU-T.

The elements of the ‘User’s Guide’ do not obviously encompass all
the rules of the ‘Reference Manual’. And vice versa: the ‘User’s Guide’
includes tips for writing specifications that do not necessarily appear in
the ‘Reference Manual’.

8.2 Editorial conventions

First, we define a few terms of parsing theory [ASU86]. A grammar
includes the following components:

• a set of lexical tokens or terminals (which are sent by the scanner
(or lexical analyzer) to the parser, see Figure 22.1 on page 464);

• a set of productions, where each production or re-writing rule

8 - Introduction to the Reference Manual 99

is made of a non-terminal (called ‘left-hand side of the produc-
tion’), an arrow “→”, and a series of lexical tokens and non-
terminals (called ‘right-hand side of the production’). For clarity’s
sake, productions with the same left-hand side are grouped and
separated by the “|” symbol, which can be read ‘or’. We call pro-
duction (singular), a collection of re-writing rules with the same
left-hand side and alternative, each one of these re-writing rules.
We keep the term ‘rule’ for the semantic rules in natural language
that are detailed after each production.

The following editorial conventions are systematically used in the
second part of the book.

• the lexical tokens of ASN.1 are written in lower-case letters in a
sans serif font (e.g. typereference);

• the keywords (except the character string types) are in upper-case
letters and in teletype font (e.g. BOOLEAN); special characters and
symbols are between double quotes in teletype font (e.g. “,”);

• the non-terminals begin with an upper-case letter and are denoted
in italics (e.g. Assignment);

• a non-terminal whose production appear in another section is un-
derlined (e.g. DefinedValue); this definition can be easily found
using the index on page 543;

• we use the Greek letter epsilon ‘ε’ to state self-explicitly an empty
alternative in a production, i.e. an alternative for which no infor-
mation should be given;

• the recursive items are denoted by the rational operators “∗” and
“+” which are defined with the symbol “· · ·” as follows (where c
stands for any separation mark such as “,” or “.”):

X → A c · · ·∗ ⇐⇒ X → A Y X → A c · · ·+ ⇐⇒ X → A Y
| ε Y → c A Y

Y → c A Y | ε
| ε

• in order to facilitate the reading, some productions appear in sev-
eral sections (for example, the production NamedValue appears in
the descriptions of SequenceValue and SetValue);

100 ASN.1 – Communication between Heterogeneous Systems

• the semantic rules are all referenced by a number in angles “〈 〉”
to spot them easily;

• the yellow parts indicate work under discussion at the ISO|ITU-T
ASN.1 working group and not standardized yet, as it is. These
parts should be handled with care: it is indeed impossible to ensure
that these propositions will be adopted in the end. However, they
illustrate the fact that the ASN.1 standard is not frozen and try
to take into account all users’ requests.

8.3 Lexical tokens in ASN.1

8.3.1 User’s Guide

In this section, we present the lexical tokens of the ASN.1 notation,
which are called ‘ASN.1 items’ in the standard.

From the lexical analyzer’s viewpoint [ASU86], two lexemes (the
value taken by a lexical token) are separated by a space, a comment or a
newline except if the first character of the second lexeme is not allowed
for the lexical token it refers to1.

8.3.2 Reference Manual

bstring

〈1〉 A binary string consists of a (possibly empty) series of 0, 1, spaces,
tabulations and newlines, preceded by the character “’” and followed
by “’B”.
〈2〉 The spaces, tabulations and newlines (of code 9, 10, 13 and 32 in
Table 11.2 on page 178) appearing in a binary string are meaningless.
These characters were not allowed in ASN.1:1990.

1For ASN.1:1994 and ASN.1:1997, the valid characters (except for comments where
all characters are allowed and character strings whose character set depends on their
governing type) are: “A” to “Z”, “a” to “z”, “0” to “9”, “:”, “=”, “,”, “{”, “}”, “<”,
“.”, “@”, “(”, “)”, “[”, “]”, “-”, “’”, “"”, “|”, “&”, “^”, “*”, “;” and “!”.

During the January 1999 meeting in Lannion, it has been proposed to include the
underscore “ ” as an equivalent to the dash “-” in references and identifiers (partic-
ularly to make ASN.1 consistent with other formal notations it is used with, such
as SDL and TTCN, see Chapter 23). During the June 1999 meeting in Geneva, the
working group preferred to postpone the decision because they aspired to a solution
that would not jeopardize existing specifications and keep their homogeneity.

8 - Introduction to the Reference Manual 101

comment

〈3〉 A comment begins with a double dash “--” and is made of an unre-
stricted number of (any) characters and stops at the following newline
or the next double dash.
〈4〉 When applied to a constructed type like SEQUENCE, SET, CHOICE,
SEQUENCE OF or SET OF, a comment may use the meta-notation “@” pre-
sented on page 231.
〈5〉 Comments in natural language occurring in a specification are ig-
nored by the ASN.1 tools: they are used only to explain the meaning to
be associated with a type by the communicating application. However
some compilers do take into account formal comments called directives
(or sometimes encoding pragmas), which generally begin with special
characters depending on the tool such as “--*”, “--$” or “--< >--”
(see Chapter 22).

cstring

〈6〉 A character string consists of a (possibly empty) series of characters
of the repertoire denoted by the associated character string type (see
Chapter 11). It begins and stops with a double quote “"”.
〈7〉 If a string includes a double quote, this double quote should be pre-
ceded by another double quote (see the example on page 173).
〈8〉 If the string is spread out over several lines, the spaces and tabula-
tions that precede and follow the newline character are meaningless (the
newlines themselves are ignored). In ASN.1:1990, strings on more than
one line were not allowed.
〈9〉 Strings cannot include control characters, except for the type
IA5String if the production Tuple is used (see on page 197) and for
the types UniversalString, BMPString and UTF8String if the production
Quadruple is used (see on page 196).

hstring

〈10〉 A hexadecimal string consists of a (possibly empty) series of char-
acters “A” to “F” (upper-case), “0” to “9”, space and newline, beginning
with “’” and followed by “’H”.
〈11〉 The spaces, tabulations and newlines (of code 9, 10, 13 and 32) ap-
pearing in a hexadecimal string are meaningless. These characters were
not allowed in ASN.1:1990.

identifier

〈12〉 An identifier consists of a lower-case letter followed (or not) by sev-
eral letters (upper-case letters from “A” to “Z” and lower-case letters),
digits and dashes (the last character cannot be a dash and the double
dash is not allowed).

102 ASN.1 – Communication between Heterogeneous Systems

〈13〉 The underscore “ ” is not allowed in identifiers (see footnote 1 on
page 100).
〈14〉 The length of an identifier is not limited but too long identifiers
may be rejected by some target computing languages used by ASN.1
compilers.
〈15〉 The identifiers are used to label the components of SEQUENCE and
SET types, the alternatives of CHOICE types, the numbers of INTEGER and
ENUMERATED types, and the bit locations in BIT STRING types.
〈16〉 In case a national standardization organization defines a standard
derived from the ASN.1 standard to use a case-unsensitive language (for
example, SDL, see Section 23.1 on page 476), another way of distinguish-
ing the lexical tokens identifier and valuereference from typereference and
modulereference should be agreed on (for example, adding a semicolon
at the end of each definition as suggested in rule 〈37〉 on page 104).

modulereference

〈17〉 The lexical token modulereference consists of the same character
sequence as typereference (see rules 〈26〉 and 〈28〉 on the next page).

number

〈18〉 A number consists of one or several digits. If the number has more
than one digit, the first should be different from 0.

objectclassreference

〈19〉 The lexical token objectclassreference consists of the same character
sequence as typereference (see rules 〈26〉 and 〈28〉 on the next page),
except that lower-case characters are not allowed.

objectfieldreference

〈20〉 The lexical token objectfieldreference consists of the ampersand “&”
followed by an objectreference (see rule 〈21〉 on the current page).

objectreference

〈21〉 The lexical token objectreference consists of the same character se-
quence as valuereference (see rule 〈32〉 on the next page).

objectsetfieldreference

〈22〉 The lexical token objectsetfieldreference consists of the ampersand
“&” followed by an objectsetreference (see rule 〈23〉 below).

objectsetreference

〈23〉 The lexical token objectsetreference consists of the same character
sequence as typereference (see rules 〈26〉 and 〈28〉 on the next page).

8 - Introduction to the Reference Manual 103

SignedNumber → number
| “-” number

〈24〉 The value “-0” is not allowed.
typefieldreference

〈25〉 The lexical token typefieldreference consists of the ampersand “&”
followed by a typereference (see rules 〈26〉 and 〈28〉 below).

typereference
〈26〉 The lexical token typereference consists of an upper-case letter,
followed (or not) by several letters (upper-case letters from “A” to “Z”,
and lower-case letters), digits and dashes (the last character cannot be
a dash and the double dash is not allowed).
〈27〉 The length of a typereference is unlimited but too long references
may not be supported by some target computing languages used by
ASN.1 compilers.
〈28〉 typereference cannot be one of the following keywords:
ABSENT, ABSTRACT-SYNTAX, ALL, APPLICATION, AUTOMATIC, BEGIN,
BIT, BMPString, BOOLEAN, BY, CHARACTER, CHOICE, CLASS, COMPONENT,
COMPONENTS, CONSTRAINED, CONTAINING , DEFAULT, DEFINITIONS, EMBEDDED,
ENCODED , END, ENUMERATED, EXCEPT, EXPLICIT, EXPORTS, EXTENSIBILITY,
EXTERNAL, FALSE, FROM, GeneralizedTime, GeneralString, GraphicString,
IA5String, IDENTIFIER, IMPLICIT, IMPLIED, IMPORTS, INCLUDES, INSTANCE,
INTEGER, INTERSECTION, ISO646String, MAX, MIN, MINUS-INFINITY,
NULL, NumericString, OBJECT, ObjectDescriptor, OCTET, OF, OPTIONAL,
PATTERN , PDV, PLUS-INFINITY, PRESENT, PrintableString, PRIVATE,
REAL, RELATIVE-OID, SEQUENCE, SET, SIZE, STRING, SYNTAX, T61String,
TAGS, TeletexString, TRUE, TYPE-IDENTIFIER, UNION, UNIQUE, UNIVERSAL,
UniversalString, UTCTime, UTF8String, VideotexString, VisibleString,
WITH.
〈29〉 The underscore “ ” is not allowed in typereference (see footnote 1
on page 100).
〈30〉 Rule 〈16〉 on the preceding page applies also to typereference.

valuefieldreference
〈31〉 The lexical token valuefieldreference consists of the ampersand “&”
followed by a valuereference (see rule 〈32〉 below).

valuereference
〈32〉 The lexical token valuereference consists of the same character se-
quence as identifier (see rule 〈12〉 on page 101).

104 ASN.1 – Communication between Heterogeneous Systems

valuesetfieldreference
〈33〉 The lexical token valuesetfieldreference consists of the ampersand
“&” followed by a typereference (see rules 〈26〉 and 〈28〉 on the page
before).

word
〈34〉 The lexical token word consists of an upper-case letter, followed (or
not) by several upper-case letters, digits and dashes (the last character
cannot be a dash and the double dash is not allowed).
〈35〉 word cannot be one of the keywords quoted in rule 〈9〉 on page 326.

“;”
〈36〉 The semicolon “;” is never used in an ASN.1 specification except
at the end of the EXPORTS and IMPORTS clauses (see on page 115).
〈37〉 The semicolon “;” is used at the end of all ASN.1 assignments de-
fined in the context of the SDL formal language; this is necessary to
remove all syntactic ambiguities since SDL does not make case differ-
ences (see rule 〈16〉 on page 102).

Chapter 9

Modules and assignments

Contents

9.1 Assignments . 106

9.2 Module structure . 110

9.3 Local and external references 117

9.4 The semantic model of ASN.1 121

[...] I call ‘even number’ a number that
can be equally divided by two. This is a
geometrical definition.

Blaise Pascal, On Geometrical Spirit and the
Methods of Geometrical Demonstrations, i.e.

Methodical and Flawless.

The other chapters of this Reference Manual will frequently refer to the
current chapter, most of the time implicitly. Indeed we present here the
various categories of assignments that can be specified in ASN.1 and we
expose how these should be collected in modules or how they can be
referenced.

This chapter is very unlikely to be the most entertaining of this
text; therefore we would suggest the reader to go back over the case
study of Chapter 4 before proceeding further with this guide because
the guidelines to be found there will not be repeated hereafter.

106 ASN.1 – Communication between Heterogeneous Systems

9.1 Assignments

9.1.1 User’s Guide

Some concepts of ASN.1 were only breached in the case study of Chapter
4 or in Chapter 5. There are six distinct categories of assignments
altogether that can be found in a module body: types, values, value
sets, information object classes, information objects and information
object sets.

To define a new type we should give it a name beginning with an
upper-case letter (conform to the lexical token typereference defined on
page 103), followed by the symbol “::=”, and a type expression con-
form to what is exposed in Chapters 10 and 11 for the basic types, in
Chapter 12 for the constructed types and in Chapter 13 for the subtype
constraints:

TypeReference ::= CHOICE { integer INTEGER,

boolean BOOLEAN }
Other examples of type definitions were given in Section 5.2 on page 45.

Type is the most important concept in ASN.1 since it enables to
specify values that can be transferred between two communicating ap-
plications (indeed a type can be semantically interpreted as a set of
values). As a result, any ASN.1 assignment that would not be refer-
enced (even indirectly) in a type assignment would not be involved in
the communication process.

The type of highest level, which is not referenced in another type
assignment, is called PDU (Protocol Data Unit). This is the type of
the data that are exchanged between applications.

To define a (abstract) value we should give it a name starting with
a lower-case letter, followed by its type generally referenced by its name
(starting with an upper-case letter), the “::=” symbol and the value:

value-reference TypeReference ::= integer:12

Other value definitions were presented in Section 5.3 on page 48.

An abstract value is never encoded (i.e. it will never be transmitted
to the remote application), it is ‘only’ used to refine the abstract
syntax. It can be found in the DEFAULT clauses of a SEQUENCE or SET

type (see Section 12.2 on page 218 and Section 12.3 on page 226), in
subtype constraints (see Chapter 13) and in information object classes
or information object definitions (see Chapter 15). A value definition

9 - Modules and assignments 107

should therefore always be referenced by another definition, but the
specifier sometimes uses it formulated as a sort of formal comment to
give an example of value for some types of the specification.

If two types (whether basic or constructed) are syntactically identi-
cal, every value of one type can be governed by the other type. In other
words, if two types are compatible, every value of one type can be used
instead of a value of the other:

Pair ::= SEQUENCE { x INTEGER,

y INTEGER }

Couple ::= SEQUENCE { x INTEGER,

y INTEGER }

pair Pair ::= { x 5, y 13 }

couple Couple ::= pair

Lighter-state ::= ENUMERATED { on(0), off(1),

out-of-order(2) }

Kettle-state ::= ENUMERATED { on(0), off(1),

out-of-order(2) }

lighter Lighter-state ::= on

kettle Kettle-state ::= lighter

Note the originality (or the ambiguity!) of this last example when
the state of a lighter is used for defining the state of a kettle. This
correspondence between compatibility of types and that of values have
been introduced by three amendments called ‘semantic model of ASN.1’
(see Section 9.4 on page 121), which have been approved in June 1999.
Some tools were applying such a correspondence before it was actually
standardized.

To define a value set, it is given a name beginning with an upper-case
letter, then comes the type (generally a name that begins with an upper-
case letter) and finally after the symbol “::=”, we give in curly brackets
a series of values separated by the vertical bar “|” or a combination of
the set operators defined in Section 15.5.2 on page 331:

PrimeNumbers INTEGER ::= { 2 | 3 | 5 | 7 | 11 | 13 }

Semantically, a value set is equivalent to a constrained type but its
specific notation was introduced in 1994 to make it consistent with that
of object sets. We shall come back on this very notion in Section 15.5
on page 329.

108 ASN.1 – Communication between Heterogeneous Systems

1st character of 1st character of ::= Assignment
the first lexeme the second lexeme category

Upper-case-letter ::= type or information ob-
ject class

lower-case-letter Upper-case-lettera ::= value or information ob-
ject

Upper-case-letter Upper-case-letter a ::= value set or information
object set

aFrom a merely lexical point of view [ASU86], a lexeme in upper-case letters cannot
be decoded by a tool only as an information object class reference: in principle nothing
prevents a whole type reference from being spelt in upper-case letters.

Table 9.1: Syntactical ambiguities in left parts of assignments

The definitions of information object classes, information objects and
information object sets are discussed in greater length in Chapter 15.

Table 9.1 shows that if only the left-hand side of an assignment is
being considered (before the “::=” symbol), the type, value and value set
assignments are (respectively) similar to the class, object and object set
assignments. This implies that tools like ASN.1 compilers should know
the whole specification, using the IMPORTS clauses, to ‘understand’ it
(i.e. to associate the right lexical token to each lexeme) since the ASN.1
syntax does not always permit to recognize an assignment category1.

9.1.2 Reference Manual

AssignmentList → Assignment · · ·+

Assignment → TypeAssignment
| ValueAssignment | ValueSetTypeAssignment
| ObjectClassAssignment | ObjectAssignment
| ObjectSetAssignment | ParameterizedAssignment

〈1〉 All the Assignments of a module must have distinct references (if
two references differ from at least a letter case they are distinct).
〈2〉 If an Assignment reference also appears in the IMPORTS clause of a
module, the rule 〈22〉 on page 116 applies.

1The problem gets worse when ASN.1 is used in an SDL specification, which is
not (yet) case-sensitive.

9 - Modules and assignments 109

TypeAssignment → typereference “::=” Type
Type → BuiltinType

| ReferencedType
| ConstrainedType

BuiltinType → BitStringType | BooleanType
| CharacterStringType | ChoiceType
| EmbeddedPDVType | EnumeratedType
| ExternalType | InstanceOfType
| IntegerType | NullType
| ObjectClassFieldType | ObjectIdentifierType
| OctetStringType | RealType
| RelativeOIDType | SequenceType
| SequenceOfType | SetType
| SetOfType | TaggedType

ReferencedType → DefinedType | UsefulType
| SelectionType | TypeFromObject
| ValueSetFromObjects

〈3〉 Recursive types are allowed in ASN.1. The user should ensure that
these types have at least one value of finite representation.

ValueAssignment → valuereference Type “::=” Value

〈4〉 Value must be a value expression of type Type or of a type that is
compatible with Type according to the semantic model of ASN.1 (see
Section 9.4 on page 121).

Value → BuiltinValue
| ReferencedValue

〈5〉 Although recursive types are allowed in ASN.1 (see rule 〈3〉 on the
current page), recursive values are forbidden.

BuiltinValue → BitStringValue | BooleanValue
| CharacterStringValue | ChoiceValue
| EmbeddedPDVValue | EnumeratedValue
| ExternalValue | InstanceOfValue
| IntegerValue | NullValue
| ObjectClassFieldValue | ObjectIdentifierValue
| OctetStringValue | RealValue
| RelativeOIDValue | SequenceValue
| SequenceOfValue | SetValue
| SetOfValue | TaggedValue

110 ASN.1 – Communication between Heterogeneous Systems

ReferencedValue → DefinedValue
| ValueFromObject

TaggedValue → Value

ValueSetTypeAssignment → typereference Type “::=” ValueSet

〈6〉 Every value of the ValueSet must be of type Type or of a type that
is compatible with Type according to the semantic model of ASN.1 (see
Section 9.4 on page 121).
〈7〉 typereference denotes the subtype of Type that contains the values
specified by ValueSet (rule 〈11〉 on page 333 draws a parallel between a
value set and a subtype constraint).
〈8〉 A value set cannot be empty (see rule 〈15〉 on page 333).
〈9〉 If a value set should be renamed, the production TypeAssignment
(see rule 〈11〉 on page 333) is to be used to give: ValueSet2 ::=

ValueSet1.

ObjectClassAssignment → objectclassreference “::=” ObjectClass

ObjectAssignment →
objectreference DefinedObjectClass “::=” Object

〈10〉 The information object Object must be of class DefinedObjectClass.

ObjectSetAssignment →
objectsetreference DefinedObjectClass “::=” ObjectSet

〈11〉 Every information object in ObjectSet must be of class DefinedOb-
jectClass.

9.2 Module structure

9.2.1 User’s Guide

In ASN.1, a specification breaks down into one or several modules. The
basic element for an ASN.1 compiler, the module, can be shared by sev-
eral specifications, thereby facilitating their coherence. They contain
mainly type assignments but also value, value set, class, object and ob-
ject set assignments (even macro assignments if the module refers unfor-
tunately to the ASN.1:1990 standard). These categories of assignments
are presented in the next section.

9 - Modules and assignments 111

Every module must comply with the minimal form:

ModuleName DEFINITIONS ::=

BEGIN

-- assignments

END

where DEFINITIONS, BEGIN and END are keywords and where the name
of the module ModuleName respects the lexical rules of the token
modulereference defined on page 102 (namely it starts with an upper-
case letter).

It is preferable, as much as possible, to build up the module names
with the number of the standard it refers to and its name or acronym.
This would give for example a module called ISO8823-PRESENTATION in
the standard [ISO8823-1] of the Presentation layer protocol (which we
presented in Section 3.2 on page 20).

The module names may have a world-wide scope of action in which
case it is obviously impossible to ensure uniqueness. In order to clear
up this ambiguity, the module is registered in a world-wide registration
tree. This procedure is described on page 163, where we deal with object
identifiers. If the module is registered, its object identifier is inserted in
curly brackets on the left-hand side of its name:

ModuleName {iso member-body(2) f(250) type-org(1)

ft(16) asn1-book(9) chapter9(1) module1(0)}
DEFINITIONS ::=

BEGIN

-- assignments

END

If the specifier needs to invoke definitions from other modules they
can be imported at the beginning of the module header with the IMPORTS

clause (at the end of which we eventually find a singular semicolon: it
is the only case, beside the symmetric EXPORTS clause, where it should
be used in ASN.1):

ModuleName DEFINITIONS ::=

BEGIN

IMPORTS Type1 FROM Module1 {iso member-body(2) f(250)

type-org(1) ft(16) asn1-book(9)

chapter9(1) module1(0)}
value2 FROM Module2 {iso member-body(2) f(250)

type-org(1) ft(16) asn1-book(9)

chapter9(1) module2(1)};
-- assignments

END

112 ASN.1 – Communication between Heterogeneous Systems

The object identifiers that follow Module1 and Module2 reference unam-
biguously the two modules (see on page 163).

It is impossible to import all the definitions of a module with a single
notation, which could be “IMPORTS ALL FROM Module1”. The specifier has
to import every referenced assignment one by one. The references to
parameterized assignments (see Chapter 17) can be followed by curly
brackets:

ModuleName DEFINITIONS ::=

BEGIN

IMPORTS T{} FROM Module1;

U ::= T{INTEGER}

END

To indicate that a module does not use definitions from other mod-
ules the “IMPORTS;” clause can be inserted at the beginning of the body,
after the keyword BEGIN.

The specifier may restrict the module interface by stating explicitly
in an EXPORTS clause the assignments that can be imported by other
modules:

ModuleName DEFINITIONS ::=

BEGIN

EXPORTS Type1, Type2;

IMPORTS Type1, value1 FROM Module1;

Type2 ::= SET { a Type1 DEFAULT value1,

b BOOLEAN }

END

Note that the EXPORTS clause should necessarily appear before the
IMPORTS clause. If a module does not contain the EXPORTS clause, all
the definitions are visible from its interface. However, if it includes the
“EXPORTS;” clause, none of its definitions can be imported by any other
module (these are ‘locked’ in the module).

The notation “EXPORTS ALL;” will soon be added to the ASN.1 stan-
dard [ISO8824-1DTC2]. It will be equivalent to omitting the clause
EXPORTS, i.e. all assignments defined (or imported) in the module can
be referenced by some other module or imported in it.

9 - Modules and assignments 113

In the header (i.e. after the keyword DEFINITIONS), a module may
include two particular clauses:

ModuleName DEFINITIONS

AUTOMATIC TAGS EXTENSIBILITY IMPLIED ::=

BEGIN

-- assignments

END

The clauses EXPLICIT TAGS, IMPLICIT TAGS or AUTOMATIC TAGS, which set
the global tagging mode of the module, are presented in Section 12.1.3
on page 213. The clause EXTENSIBILITY IMPLIED, which makes all the
CHOICE, SEQUENCE, SET and ENUMERATED types of the module extensible, is
presented on page 252.

Finally, the specifier is free to format2 the module as required and in
particular, to start and finish the assignments anywhere in the specifica-
tion. Indeed spaces, tabulations and newlines are meaningless for tools
but for separating the tokens during the scanning stage (see Figure 22.1
on page 464).

9.2.2 Reference Manual

ModuleDefinition → ModuleIdentifier DEFINITIONS

TagDefault ExtensionDefault “::=”
BEGIN ModuleBody END

〈1〉 The production TagDefault is defined on page 217.

ModuleIdentifier → modulereference DefinitiveIdentifier

〈2〉 The name of a module modulereference can be defined only once in
the ‘scope’ of a specification (the standard does not define exactly what
‘scope’ is).
〈3〉 It is impossible to break down a module into several parts using each
time the same modulereference.

DefinitiveIdentifier → “{” DefinitiveObjectIdComponent · · ·+ “}”
| ε

〈4〉 The object identifier DefinitiveIdentifier uniquely and unambigu-
ously identifies a module (see Section 10.8 on page 153).

2An ASN.1 mode for Emacs, which can be used on many oper-
ating systems, is available on the web site associated with this book
(http://asn1.elibel.tm.fr/en/tools/emacs/). It offers a default formatting option but
can be easily adapted to comply with every user’s needs.

http://asn1.elibel.tm.fr/en/tools/emacs/

114 ASN.1 – Communication between Heterogeneous Systems

〈5〉 The object identifier DefinitiveIdentifier contains at least two arcs
(DefinitiveObjectIdComponent). This restriction is imposed by the BER
encoding rules, which encode together the two first arcs of the registra-
tion tree (see Section 18.2.8 on page 404).

DefinitiveObjectIdComponent → NameForm
| DefinitiveNumberForm
| DefinitiveNameAndNumberForm

NameForm → identifier

DefinitiveNumberForm → number

DefinitiveNameAndNumberForm →
identifier “(” DefinitiveNumberForm “)”

〈6〉 identifier must be followed by a digit in round brackets (production
DefinitiveNameAndNumberForm) except if it is one of the identifiers
defined in Annexes A to C of the [ISO9834-1] standard, which are in
yellow in Figure 10.4 on page 161.
〈7〉 The module object identifier (DefinitiveIdentifier) cannot contain a
reference to a value (DefinedValue). ASN.1:1990 allowed the use of a
reference to an INTEGER or OBJECT IDENTIFIER value in this case, but the
compiler often imposed the DefinedValue to be defined in the identified
module.

ExtensionDefault → EXTENSIBILITY IMPLIED

| ε
〈8〉 The clause EXTENSIBILITY IMPLIED imposes the automatic insertion
of an extensible marker “...” at the end of all the CHOICE, ENUMERATED,
SEQUENCE and SET types of the current module that do not explicitly con-
tain such a marker. If this clause is not present in the module header,
only the types including explicitly such a marker are extensible.
〈9〉 The clause EXTENSIBILITY IMPLIED only affects types: it has no effect
on value sets, object sets or subtype constraints.
〈10〉 Before inserting a clause EXTENSIBILITY IMPLIED in the module
header, the user should make sure that all SEQUENCE, SET and CHOICE

types defined in this module respect the rule 〈16〉 on page 255 (particu-
larly if these types include an extensible or untagged CHOICE type as one
of their extensions).
〈11〉 To avoid checking the previous rule, the insertion of the clause
AUTOMATIC TAGS in the header of the module should be preferred.

ModuleBody → Exports Imports AssignmentList
| ε

9 - Modules and assignments 115

Exports → EXPORTS SymbolsExported “;”
| ε

SymbolsExported → Symbol “,” · · ·∗

〈12〉 If the alternative ε is selected in the Exports rule (i.e. the keyword
EXPORTS is not present), all the assignments defined (and imported) in
the module are exported. This behavior was defined as the default case
because the EXPORTS clause does not exist in the ASN.1:1984 standard.
〈13〉 The ASN.1 working group have agreed on allowing the clause
“EXPORTS ALL;” in a module header. It will be equivalent to omitting
the EXPORTS clause.
〈14〉 If no definition of the current module should be referenced in any
other module, the clause “EXPORTS;” must be added in the module
header.
〈15〉 Every reference (Symbol) in the EXPORTS clause is defined in the
current module, otherwise it must appear only once in the IMPORTS

clause of this module. The second part of the rule has been allowed since
1994 because this particular use appeared in some objects managed by
GDMO and in ASN.1 modules related to network management (see
Section 23.3 on page 482).

Imports → IMPORTS SymbolsImported “;”
| ε

SymbolsImported → SymbolsFromModule · · ·∗
SymbolsFromModule →

Symbol “,” · · ·+ FROM GlobalModuleReference

〈16〉 If the EXPORTS clause appears in the referenced module, every
Symbol imported in the current module must appear in the SymbolsEx-
ported clause of the referenced module.
〈17〉 Every Symbol appearing in SymbolsFromModule must be defined
in the body or in the IMPORTS clause of the referenced module (in the
second case, Symbol can appear only once in the IMPORTS clause of the
referenced module and should not be referenced in the body of that
module).
〈18〉 For each Symbol referencing a type, the type is imported once
tagged according to the global tagging mode (EXPLICIT TAGS, IMPLICIT
TAGS or AUTOMATIC TAGS) of the module where it is defined. If the type
is ENUMERATED, SEQUENCE, SET or CHOICE and if the module where it is
defined includes the EXTENSIBILITY IMPLIED clause in its header, an
extension marker “...” is inserted at the end of the definition if not
present.

116 ASN.1 – Communication between Heterogeneous Systems

〈19〉 If a module contains an IMPORTS clause, the only external ref-
erences (ExternalTypeReference, ExternalValueReference...) allowed
in this module (see Section 9.3 on the next page) are those whose
modulereference appears as a GlobalModuleReference in a SymbolsFrom-
Module and whose (type, value...) reference appears in the Symbols list
of the same SymbolsFromModule.
〈20〉 If no Symbol should be used in any external references
(ExternalTypeReference, ExternalValueReference...), the clause
“IMPORTS;” (followed only by a semicolon) must be inserted in
the module header.
〈21〉 If there is no IMPORTS clause in the module header, this module can
reference assignments from other modules using an external reference
(ExternalTypeReference, ExternalValueReference...).
〈22〉 When a Symbol of the SymbolsImported list is also used to name an
Assignment of the current module or when it appears several times in
SymbolsFromModules of the current module, it must be used only as an
external reference (ExternalTypeReference, ExternalValueReference...)
whose modulereference is the one that appears in the GlobalModuleRef-
erence following this Symbol (and not the one appearing in the header
of the referenced module). An example will be given on page 164. It is
not recommended to use this rule.

GlobalModuleReference → modulereference AssignedIdentifier

〈23〉 In Imports, all the modulereferences must be distinct and different
from that of the current module.
〈24〉 In Imports, all the object identifiers AssignedIdentifier must be dis-
tinct and different from that of the current module.
〈25〉 If the object identifier AssignedIdentifier is present in GlobalMod-
uleReference, it should necessarily be equivalent to (i.e. represent the
same path in the registration tree as) the DefinitiveIdentifier that ap-
pears in the header ModuleDefinition of the referenced module.
〈26〉 GlobalModuleReference must include the same module name
modulereference as in the header ModuleDefinition of the refer-
enced module, except if AssignedIdentifier is present, in which case
modulereference can be changed if necessary to prevent reference am-
biguities (when the same Symbol is imported from two modules with
the same modulereference, see rule 〈22〉 on this page).

9 - Modules and assignments 117

AssignedIdentifier → ObjectIdentifierValue
| DefinedValue
| ε

〈27〉 The object identifier AssignedIdentifier uniquely identifies the only
module from which definitions can be imported (see on page 163).
〈28〉 DefinedValue is a reference to an OBJECT IDENTIFIER value. This
alternative was not allowed in ASN.1:1990, i.e. AssignedIdentifier could
not be a value reference.
〈29〉 Each DefinedValue appearing in AssignedIdentifier should:

– either be defined as an Assignment in the body of the current
module and every valuereference that appears in the right-hand
side of this Assignment (i.e. after “::=”) must respect the current
rule 〈29〉;

– or appear as Symbol in a production SymbolsFromModule of the
current module with an object identifier AssignedIdentifier that
contains no DefinedValue.

Symbol → Reference
| ParameterizedReference

Reference → typereference | valuereference
| objectclassreference | objectreference
| objectsetreference

ParameterizedReference → Reference
| Reference “{” “}”

〈30〉 The two alternatives of the ParameterizedReference production are
semantically equivalent. The second one should be preferred when the
imported symbol is parameterized.

9.3 Local and external references

9.3.1 User’s Guide

As in every computing language or formal notation, an ASN.1 definition
is straightforwardly referenced by its name, which may start with an
upper-case or lower-case letter (see Table 9.1 on page 108) according to
the definitions of the lexical tokens given in Section 8.3 on page 100.

ASN.1 also offers the possibility of referencing an assignment that
belongs to another module by means of an external reference. This

118 ASN.1 – Communication between Heterogeneous Systems

reference consists of the assignment name preceded by the name of the
module that exports it, and a dot as in:

MyType ::= SET OF OtherModule.Type

Even though it looks like a rather convenient notation, such an ex-
ternal reference is not recommended because it does not clearly isolate
the interface from the module.

The IMPORTS clause should be preferred since it has the undeniable
advantage of clearly indicating at the very beginning of a module, the
other referenced modules. This clause also helps the programmer to
quickly collect all the modules necessary for compiling the specifications
(see Chapter 22).

Besides, if a module includes an IMPORTS clause, the module names
appearing as a prefix of all external references used in the module should
be mentioned in this clause. As a result, if a module has the clause
“IMPORTS;” in its header, it cannot contain external references.

9.3.2 Reference Manual

Type reference (or value set reference)

DefinedType → ExternalTypeReference
| typereference
| ParameterizedType
| ParameterizedValueSetType

〈1〉 Productions ParameterizedType and ParameterizedValueSetType are
defined on page 387.
〈2〉 typereference, ParameterizedType and ParameterizedValueSetType
must name an Assignment of the current module or it must appear
as a Symbol of the IMPORTS clause of the current module.

ExternalTypeReference → modulereference “.” typereference

〈3〉 modulereference cannot reference the current module.
〈4〉 modulereference must appear only once in the IMPORTS clause of
the current module (the rules 〈22〉 and 〈26〉 on page 116 can be
used to find the referenced module thanks to the object identifier
AssignedIdentifier), otherwise it must be the same modulereference as in
the ModuleIdentifier appearing in the header of the referenced module.
〈5〉 If an IMPORTS clause appears in the header of the module referenced
by modulereference, typereference can appear only once in this whole

9 - Modules and assignments 119

clause. This rule does not clash with the rules 〈22〉 and 〈26〉 on
page 116, which allow importing a Symbol in a single module C from
two modules A and B; in this case this Symbol of module C cannot be
referenced in a module D by an external reference (ExternalTypeRefer-
ence, ExternalValueReference...).
〈6〉 It is recommended that the referenced module should include an
EXPORTS clause and that typereference should appear in this clause.
〈7〉 typereference must name a TypeAssignment or ParameterizedTy-
peAssignment, or in a ValueSetTypeAssignment or ParameterizedVal-
ueSetTypeAssignment of the module referenced by modulereference, or
else should appear as a Symbol in the IMPORTS clause of this referenced
module.

Value reference

DefinedValue → ExternalValueReference
| valuereference
| ParameterizedValue

〈8〉 The production ParameterizedValue is defined on page 387.
〈9〉 valuereference and ParameterizedValue must name an Assignment
of the current module or they must appear as a Symbol of the IMPORTS

clause of the current module.

ExternalValueReference → modulereference “.” valuereference

〈10〉 Rules 〈3〉 and 〈4〉 on the preceding page also apply to
modulereference.
〈11〉 If an IMPORTS clause appears in the header of the module referenced
by modulereference, valuereference can appear only once in this whole
clause (see rule 〈5〉 on the preceding page).
〈12〉 It is recommended that the referenced module should include an
EXPORTS clause and that valuereference should be present in this clause.
〈13〉 valuereference must name a ValueAssignment of the module
referenced by modulereference or it must appear as a Symbol in the
IMPORTS clause of this referenced module.

Information object class reference

DefinedObjectClass → ExternalObjectClassReference
| objectclassreference
| UsefulObjectClassReference

120 ASN.1 – Communication between Heterogeneous Systems

〈14〉 objectclassreference must name an ObjectClassAssignment or Pa-
rameterizedObjectClassAssignment of the current module or it must ap-
pear as a Symbol of the IMPORTS clause of the current module.

ExternalObjectClassReference →
modulereference “.” objectclassreference

〈15〉 Rules 〈3〉 and 〈4〉 on page 118 also apply to modulereference.
〈16〉 If an IMPORTS clause appears in the header of the module referenced
by modulereference, objectclassreference can appear only once in this
whole clause (see rule 〈5〉 on page 118).
〈17〉 It is recommended that the referenced module should include an
EXPORTS clause and that objectclassreference appears in this clause.
〈18〉 objectclassreference must name an ObjectClassAssignment of the
module referenced by modulereference or it must appear as a Symbol in
the IMPORTS clause of this referenced module.

Information object reference

DefinedObject → ExternalObjectReference
| objectreference

〈19〉 objectreference must name an ObjectAssignment or Parameterize-
dObjectAssignment of the current module or it must appear as a Symbol
of the IMPORTS clause of the current module.

ExternalObjectReference → modulereference “.” objectreference

〈20〉 Rules 〈3〉 and 〈4〉 on page 118 also apply to modulereference.
〈21〉 If an IMPORTS clause appears in the header of the module referenced
by modulereference, objectreference can appear only once in this whole
clause (see rule 〈5〉 on page 118).
〈22〉 It is recommended that the referenced module should include an
EXPORTS clause and that objectreference should appear in this clause.
〈23〉 objectreference must name an ObjectAssignment of the module
referenced by modulereference or it must appear as a Symbol in the
IMPORTS clause of this referenced module.

Information object set reference

DefinedObjectSet → ExternalObjectSetReference
| objectsetreference

〈24〉 objectsetreference must name an ObjectSetAssignment of the cur-
rent module or it must appear as a Symbol in the IMPORTS clause of the
current module.

9 - Modules and assignments 121

ExternalObjectSetReference →
modulereference “.” objectsetreference

〈25〉 Rules 〈3〉 and 〈4〉 on page 118 also apply to modulereference.
〈26〉 If an IMPORTS clause appears in the header of the module referenced
by modulereference, objectsetreference can appear only once in this
whole clause (see rule 〈5〉 on page 118).
〈27〉 It is recommended that the referenced module should include an
EXPORTS clause and that objectsetreference should appear in this clause.
〈28〉 objectsetreference must name an ObjectSetAssignment or Parame-
terizedObjectSetAssignment of the module referenced by modulereference
or it must appear as a Symbol in the IMPORTS clause of this referenced
module.

9.4 The semantic model of ASN.1

The semantic model of ASN.1 aims at defining exactly what is seman-
tically correct in ASN.1 to prevent tool programmers (see Chapter 22)
from interpreting the standard differently. The bottom-line question is
to clear up what is meant by the expression “should be of the same type
as”, which is frequently used in the standard and does not always tell
exactly if the type can be tagged, constrained...

The history of the semantic model has been recounted from page
69 onwards. The three documents [ISO8824-1Amd2], [ISO8824-2Amd1]
and [ISO8824-4Amd1] were approved by ITU-T in July 1999 and by ISO
in February 2000.

By recursively applying the ordered list of transformations below
[ISO8824-1Amd2, clause F.3.2], two expressions of types can be rewrit-
ten into two simpler but equivalent expressions, called normalized, whose
syntaxes can be more easily compared:

1. remove the comments;

2. the following non-recursive transformations need only be applied
once in any order :

• associate a number with the identifiers without numbers in
ENUMERATED types (see Section 10.4 on page 135), then re-
order the RootEnumerations in the alphabetical order of their
identifiers;

122 ASN.1 – Communication between Heterogeneous Systems

• for SEQUENCE types:

– cut any extension of the form “ExtensionAndException
ExtensionAdditions” and paste it at the end of the
ComponentTypeLists;

– if EXTENSIBILITY IMPLIED is present in the module
header, add an ellipsis “...” at the end of the
ComponentTypeLists, if not yet present (see on page 252);

– remove the OptionalExtensionMarker if present;

– apply the IMPLICIT TAGS clause if it is present in the mod-
ule header (see Section 12.1.3 on page 213);

– if AUTOMATIC TAGS is present in the module header, decide
whether automatic tagging must be applied (see rule 〈6〉
on page 223);

• for SET types:

– cut any extension of the form “ExtensionAndException
ExtensionAdditions” and paste it at the end of the
ComponentTypeLists;

– if EXTENSIBILITY IMPLIED is present in the module
header, add an ellipsis “...” at the end of the
ComponentTypeLists, if not yet present (see on page 252);

– remove the OptionalExtensionMarker if present;

– apply the IMPLICIT TAGS clause if it is present in the mod-
ule header (see Section 12.1.3 on page 213);

– if AUTOMATIC TAGS is present in the module header, decide
whether automatic tagging must be applied (see rule 〈6〉
on page 227);

• for CHOICE types:

– reorder the RootAlternativeTypeList in the alphabetical
order of its identifiers;

– if EXTENSIBILITY IMPLIED is present in the module
header, add an ellipsis “...” at the end of the
ComponentTypeLists, if not yet present (see on page 252);

– remove the OptionalExtensionMarker if present;

– apply the IMPLICIT TAGS clause if it is present in the mod-
ule header (see Section 12.1.3 on page 213);

9 - Modules and assignments 123

– if AUTOMATIC TAGS is present in the module header, decide
whether automatic tagging must be applied (see rule 〈4〉
on page 238);

• the following transformations must be applied recursively in
the specified order, until a fix-point is reached:

(a) for each OBJECT IDENTIFIER value that begins with a
DefinedValue, replace it with its definition;

(b) develop the syntactic operators COMPONENTS OF (see Sec-
tion 12.2 on page 218 and Section 12.3 on page 226);

(c) develop the syntactic selection operator “<” (see Sec-
tion 12.7 on page 239);

(d) replace each DefinedType with its definition (see Sec-
tion 9.1 on page 106) according to the following rules:

– if the replacing type is a reference to the type being
transformed, the DefinedType is replaced by a special
lexical item that matches no other item than itself;

– if the replaced type is a ParameterizedType
or a ParameterizedValueSetType, replace ev-
ery DummyReference with the corresponding
ActualParameter;

(e) replace all DefinedValue by its definition (see Sec-
tion 9.1 on page 106); if it is a ParameterizedValue,
replace every DummyReference with the corresponding
ActualParameter;

3. move all constraints that apply to a SEQUENCE OF and SET OF type
before the keyword OF (see Section 13.8 on page 275);

4. for each SET type, reorder the RootComponentTypeList in the al-
phabetical order of its identifiers;

5. for each SEQUENCE, SET and CHOICE for which it has been decided
earlier to tag automatically, apply the automatic tagging (see Sec-
tion 12.1.3 on page 213);

6. for each INTEGER value that is defined as an identifier, replace it by
its associated number;

7. delete the NamedNumberLists that follow INTEGER types (as a con-
sequence, two INTEGER types are compatible even if their named

124 ASN.1 – Communication between Heterogeneous Systems

number lists are not the same, but this rule does not apply to
ENUMERATED types);

8. for each BIT STRING value that is defined as a list of identifiers,
replace it by the corresponding bstring;

9. delete the NamedBitLists that follow BIT STRING types (as a conse-
quence, two BIT STRING types are compatible even if their named
bit lists are not the same);

10. suppress all trailing zero bits at the end of BIT STRING values (see
rule 〈15〉 on page 150);

11. use systematically the numerical value (NameForm) for all the arcs
of object identifiers of type OBJECT IDENTIFIER (see Section 10.8 on
page 153) and RELATIVE-OID (see Section 10.9 on page 167);

12. remove spaces, tabulations and newlines at the beginning and at
the end of bit strings, octet strings and character strings (see rules
〈2〉 on page 100, 〈11〉 on page 101 and 〈8〉 on page 101);

13. rewrite each character string of type UTCTime or GeneralizedTime

so that it complies with the rules imposed by the DER encoding
rules (see Table 19.2 on page 421);

14. modify each REAL value representation to get either an odd man-
tissa if the real is described in base 2, or a strictly-positive mantissa
if the real is described in base 10 (by adapting the last digit of its
mantissa as appropriate);

Having applied these rules, if the expressions of two normalized types
are syntactically identical (term per term), the types are said ‘compati-
ble’. Otherwise, one must refer to the following rules:

• if a type is the subtype of another, they are compatible on their
common set of values;

• two types involving different character string types can be compat-
ible if a correspondence between the values of the character string
types have been defined (see Section 11.14 on page 197);

9 - Modules and assignments 125

• if the highest-level types have different tags, they may still be com-
patible; however, if two types SEQUENCE, SET or CHOICE are similar
but for their respective tags, they are not compatible3;

• no compatibility can exist (at least for the moment) between two
information object classes or two information objects or two infor-
mation object sets; hence two types that use one of these concepts
in their definition cannot be compatible;

Again, two types are compatible means that any value of one type can be
used every time a value of the other type is expected. This correspon-
dence between values may occur whenever a value reference appears in
an ASN.1 module, i.e. at the left-hand side of a value or information
object assignment, after the DEFAULT clause, in a subtype constraint or
in a value set specification.

Thus the types T1 and U1 below:

T1 ::= [0] SET { name PrintableString,

age INTEGER,

gender BOOLEAN -- male = TRUE -- }

U1 ::= [1] SET { gender Male,

name VisibleString,

age INTEGER }

Male ::= BOOLEAN

can be both normalized in (see Section 11.14 on page 197 for the char-
acter string type compatibility):

SET { age INTEGER,

name UniversalString,

gender BOOLEAN }

if we omit the higest-level types’ tags. These types are compatible
(with one another): a value of type T1 can be used whenever a value
of type U1 is expected and vice versa (using character strings of type
PrintableString for the component name). Other examples of compati-
bility between types were given on page 107.

3Such a rule, which somehow looks odd in the context of an ASN.1 semantic model,
aims at simplifying the implementation of the model in a compiler. The few cases
that are not considered are hardly ever used in practice: in particular, compatibility
rules makes default values easier to define for the components of types SEQUENCE and
SET (and these values are generally of type INTEGER or OBJECT IDENTIFIER).

126 ASN.1 – Communication between Heterogeneous Systems

However, the types T2 and U2 below:

T2 ::= [0] SEQUENCE { name [0] PrintableString,

age INTEGER }

U2 ::= [1] SEQUENCE { name [1] PrintableString,

age INTEGER }

are not compatible since their respective components names do not have
the same tag.

These compatibility rules are fairly restrictive not to jeopardize the
validity of existing specifications; nonetheless, it is recommended not to
use type equivalence to keep specifications simple.

Note that the ASN.1 standard imposes no condition as to how, in
practice, this semantic model should be implemented in the compilers.

Chapter 10

Basic types

Contents

10.1 The BOOLEAN type . 128

10.2 The NULL type . 129

10.3 The INTEGER type . 130

10.4 The ENUMERATED type . 135

10.5 The REAL type . 140

10.6 The BIT STRING type . 145

10.7 The OCTET STRING type 151

10.8 The OBJECT IDENTIFIER type 153

10.9 The RELATIVE-OID type 167

Why is Lego the most ingenious toy in the
world?

For a start, Sophie was not at all sure she
agreed that it was. [...]

But she was a dutiful student. Rummag-
ing on the top shelf of her closet, she found
a bag full of Lego blocks of all shapes and sizes.

Jostein Gaarder, Sophie’s World.

Without necessarily considering ASN.1 as the most ingenious toy in the
world, we present here each and every one of its basic items. In the next
chapter, we give the rules to comply with when combining these blocks
to build up more complex types.

128 ASN.1 – Communication between Heterogeneous Systems

10.1 The BOOLEAN type

10.1.1 User’s Guide

Let us start our journey in ASN.1’s world by the simplest type to un-
derstand and manipulate: the boolean type, declared with the keyword
BOOLEAN, whose two possible values are TRUE and FALSE.

At the end of a boxing round, the result can be modeled with the
type:

RoundResult ::= BOOLEAN

and examples of results for a round are:

ok RoundResult ::= TRUE

ko RoundResult ::= FALSE

A type name describing the ‘true state’ is generally preferred to
prevent any misunderstanding of the specification. For example, we
call Married rather than NotMarried, the type that describes the marital
status of a person:

Married ::= BOOLEAN

The TRUE value describes in a straightforward way a married person.

Likewise, it is better to call Male or Female rather than Gender (even
though the latter is politically correct!) the boolean type that describes
the gender of a person (thereby assuming that there are only two sorts).
Therefore, we obtain:

kim Male ::= TRUE

for which we easily deduce Kim’s gender.

Finally, to model several boolean values which convey a common
concept (a group of check boxes in a graphical interface for example),
we can use the BIT STRING type, which will be presented in Section 10.6
on page 145: it allows to emphasize the fact that the boolean values are
linked with one another.

10.1.2 Reference Manual

Type Notation

BooleanType → BOOLEAN

〈1〉 This type has tag no. 1 of class UNIVERSAL.
〈2〉 The BOOLEAN type can be constrained by a single value (production

10 - Basic types 129

SingleValue on page 261) or by type inclusion (production Contained-
Subtype on page 263), even though it is useless in practice.

Value notation

BooleanValue → TRUE

| FALSE

10.2 The NULL type

10.2.1 User’s Guide

Let us first mention an obvious paradox: as its name self-explicitly in-
dicates, the type NULL models no information. It contains a single value,
the value NULL (note the ambiguity between the value notation and the
type notation), which conveys only one piece of information (when the
value gets through, the receiver knows what semantic should be associ-
ated with it). As a result, the NULL type is the typical model for delivery
reports or acknowledgements:

Ack ::= NULL

It is also used each time the information is not available because a value
has not been given for transfer. Thus the model of a clock could be
written:

Clock ::= CHOICE { time UTCTime,

out-of-order NULL }

And when the clock battery is down, the value

battery-down Clock ::= out-of-order:NULL

is transmitted rather than return an inaccurate time or use a pre-defined
value (24:00:00 for example) to stand for this state.

Neophytes not quite familiar with the NULL type tend to go for the
BOOLEAN type instead and transmit (for example) the value TRUE for it.
In addition to the fact that the NULL value has a more compact encoding
than any other value, the use of a boolean type may lead to an erroneous
interpretation of a specification since it implies that the reception of the
TRUE value has a different meaning from that of the FALSE value.

130 ASN.1 – Communication between Heterogeneous Systems

data
�

data � data � data NULL

Figure 10.1: Linked list

One might try and use the NULL type to model an empty linked-list
as programmers usually do, i.e. using the null end mark pointer (see
Figure 10.1):

LinkedList ::= SEQUENCE {

data Data,

next CHOICE { linked-list LinkedList,

end NULL } }

But the built-in SEQUENCE OF (or SET OF) type, which will be presented
in Section 12.4 on page 230, provides a model that is much simpler and
gives a more compact encoding:

LinkedList ::= SEQUENCE OF Data

10.2.2 Reference Manual

Type notation

NullType → NULL

〈1〉 This type has tag no. 5 of class UNIVERSAL.
〈2〉 The NULL type can be constrained by a single value (production
SingleValue on page 261) or by type inclusion (production Contained-
Subtype on page 263), even though it is useless in practice.

Value notation

NullValue → NULL

10.3 The INTEGER type

10.3.1 User’s Guide

The integers can be declared in ASN.1 by the keyword INTEGER, which
stand for any positive or negative integer whatever its length1, namely

1Note, however, that this set of values does not include singular values like +∞
or −∞. We shall see on page 140 that these values are members of the REAL type.

10 - Basic types 131

the set Z in mathematics:

zero INTEGER ::= 0

french-population INTEGER ::= 60000000

fridge-temperature INTEGER ::= -18 -- in Centigrade scale

If transmitting great numbers is necessary, a representation that
could limit the encoding and enable their effective use by the commu-
nicating applications should be agreed on: indeed, the system on which
these applications are running and the languages in which they are im-
plemented are very unlikely to manage such numbers easily.

This generality of its INTEGER type is sometimes held against ASN.1
though it is always better to ‘have’ than ‘have not’; one just needs to
restrict this integer type to an interval using a subtype constraint:

Interval ::= INTEGER (123456789..123456790)

to make out the problem. In this case, the decoder knows beforehand
the size of the data to be received and can allocate the corresponding
memory needed for storing it, provided the ASN.1 compiler took
into account the subtype constraints when generating the decoder.
Moreover, if the packed encoding rules (PER) are used, the size of
these data can be notably cut down compared to a BER encoding. For
example, a value of the type Interval above is encoded with the PER
on... 1 bit! (see Chapter 20.)

In some cases (for the identification of error codes in a specification
for instance), it can be interesting to give a particular name to some
values in order to make them easier to understand and improve the
interface between the communicating applications and the encoders and
decoders. Such information can, of course, be given in comments in
the specification but these will not be used by the compiler since it
systematically ignores them at the earliest step of the lexical-analysis
stage [ASU86].

ASN.1, therefore, provides a specific syntax for the INTEGER type:
the list of integers, where every one of them is preceded by its identifier
(which begins with a lower-case letter); this list is denoted in curly
brackets2 after the keyword INTEGER.

2The reader will be easily convinced by subsequent sections of the Reference Man-
ual that the keys “{” and “}” must have been the most ‘close-at-hand’ for the ASN.1
designers, for these symbols are used in the standard to denote completely different
concepts! We will see on page 469 that this peculiarity can be tricky to deal with
when programming tools for ASN.1.

132 ASN.1 – Communication between Heterogeneous Systems

The error code of a floppy can then be modeled with the type:

ErrorCode ::= INTEGER { disk-full(1), no-disk(-1),

disk-not-formatted(2) }
stupid-error ErrorCode ::= disk-full

these identifiers have only a local scope, i.e. they can only be used to
define values of type ErrorCode like stupid-error for example. The same
number can obviously not be named by two different identifiers and a
given identifier cannot name two different numbers. The named integers
are not necessarily ordered or consecutive and the list of integers in curly
brackets is not restrictive3.

The integers that are not named remain accessible, so that non-
explicitly listed errors can be specified:

ok ErrorCode ::= 0

We can also write:

stupid-error ErrorCode ::= 1 -- disk full

even though the use of an identifier is much recommended when the
integer involved is named.

The type INTEGER is often used to model an error code, as in the
Presentation layer protocol [ISO8823-1] for example:

Abort-reason ::= INTEGER {

reason-not-specified(0),

unrecognized-ppdu(1),

unexpected-ppdu(2),

unexpected-session-service-primitive(3),

unrecognized-ppdu-parameter(4),

unexpected-ppdu-parameter(5),

invalid-ppdu-parameter-value(6) }

Another classical use is that which consists in naming particular
integers to give them a specific meaning:

Temperature ::= INTEGER { freezing(0), boiling(100) }
-- in Centigrade scale

Contrary to the ENUMERATED type, the list of identifiers cannot be
numbered automatically; the integers must be explicitly associated with
their identifiers since it is obviously these integers that are encoded for
transmission. The type INTEGER is not extensible either: the extension

3See the difference with the ENUMERATED type on page 135.

10 - Basic types 133

marker “...” cannot be used (except if the type has an extensible sub-
type constraint, see on page 291), but this is no problem since, contrary
to the ENUMERATED type, the list of named integers is not restrictive.

Even though this is no common usage, numbers in round brackets
can be references to integer values defined somewhere else in the module
or imported from some other module. If these identifiers and value
references are not properly chosen, this can result in a rather obscure
specification as in:

alpha INTEGER ::= 1

Type1 ::= INTEGER { alpha(2) }

Type2 ::= INTEGER { alpha(3), beta(alpha) }

gamma Type2 ::= beta

delta Type2 ::= alpha

In Type2, the word ‘alpha’ in round brackets is necessarily a value
reference and should be therefore represented by the value 1 (see rule
〈10〉 on the following page). For the value gamma, the word ‘beta’ is first
looked for in the scope of the INTEGER type Type2; so gamma equals 1. For
the value delta, the word ‘alpha’ is first looked for in the scope of the
type Type2, so delta equals 3.

No compatibility is defined between the types INTEGER and REAL (see
Section 9.4 on page 121), that is to say that an INTEGER value cannot be
allocated to a value of type REAL:

integer INTEGER ::= 5

real REAL ::= integer -- forbidden

Likewise, INTEGER and ENUMERATED types are not compatible either.
But two INTEGER types are compatible whatever the named number list
that can be associated to them may be.

10.3.2 Reference Manual

Type notation

IntegerType → INTEGER

| INTEGER “{” NamedNumber “,” · · ·+ “}”

〈1〉 This type has tag no. 2 of class UNIVERSAL.
〈2〉 For the second alternative, the type is not restricted to the set of
integers in curly brackets.
〈3〉 The type INTEGER can be constrained by a single value (production

134 ASN.1 – Communication between Heterogeneous Systems

SingleValue on page 261), by type inclusion (production Contained-
Subtype on page 263) or by an interval (production ValueRange on
page 265).
〈4〉 Two INTEGER types are compatible according to the semantic model
of ASN.1 (see Section 9.4 on page 121) even if their associated named
number lists differ.
〈5〉 When an INTEGER type with a named integer list is imported into
another module, the identifiers in this list are imported too. These can
only be used to define a value of this type.

NamedNumber → identifier “(” SignedNumber “)”
| identifier “(” DefinedValue “)”

〈6〉 The numbers’ ordering is not significant.
〈7〉 The identifiers in curly brackets must be distinct.
〈8〉 The integers defined, explicitly (SignedNumber) or by reference (De-
finedValue), in curly brackets must be distinct.
〈9〉 DefinedValue must be a reference to a value of type INTEGER.
〈10〉 The lexeme representing the DefinedValue cannot be interpreted
as one of the identifiers defined in the INTEGER type since an identifier
cannot be used in round brackets.

Value notation

IntegerValue → SignedNumber
| identifier

〈11〉 The identifier must be one of those appearing in the corresponding
IntegerType.
〈12〉 When defining an integer value, if the allocated value is associated
with an identifier in the type definition, it is recommended to use this
identifier instead.
〈13〉 If identifier does not appear in the named number list defined by the
associated IntegerType, identifier must be interpreted as a valuereference
in a DefinedValue, i.e. a reference to a value of type INTEGER.

10 - Basic types 135

10.4 The ENUMERATED type

10.4.1 User’s Guide

Sometimes confused with the type INTEGER, the type of enumerations
is declared with the keyword ENUMERATED, and should be distinguished
from the former for the following reasons:

• the enumeration is restrictive, i.e. the numbers that are not listed
in curly brackets do not belong to the type;

• semantically, the named integers are not numbers, so that they
cannot be manipulated by operators4 but they are only used for
encoding;

• integers do not have to be explictly associated with the identifiers
since these can automatically be computed by an ASN.1 compiler;

• the enumeration can be extended if a new version of the module
is produced to ensure the compatibility of the encoding;

• to sum it up: for an ENUMERATED type, a number is associated
(implicitely or explicitely) with every identifier whereas, for an
INTEGER type, an identifier is (explicitely) associated with each
integer.

The ENUMERATED type, therefore, is used each time we should inventory
objects5. It is frequently chosen to describe the states of a system or an
error report as in the ACSE standard for the association control service
element [ISO8650-1]:

ABRT-diagnostic ::= ENUMERATED {
no-reason-given(1), protocol-error(2),

authentication-mechanism-name-not-recognized(3),

authentication-mechanism-name-required(4),

authentication-failure(5),

authentication-required(6),

... }
4To confirm this, one can note, for example, that the SDL formalization language

(see Annex B on page 509) provides no operators to manipulate enumerated values.
5“Everything can be listed: the editions of Tasso, the islands on the Atlantic Coast,

the ingredients required to make a pear tart, the relics of the major saints, masculine
substantives with a feminine plural (amours, délices, orgues), Wimbledon finalists
[...]” (Georges Perec, Think/Classify, The ineffable joys of enumeration, translated
by John Sturrock, in Species of Spaces and Other Pieces).

136 ASN.1 – Communication between Heterogeneous Systems

The ENUMERATED type can also6 model the radio-buttons of an MMI
window:

RadioButton ::= ENUMERATED { button1(0), button2(1),

button3(2) }

selected-by-default RadioButton ::= button1

selected-by-default RadioButton ::= 0 -- forbidden

The name of the type, RadioButton, is grammatically singular since
only one button can be selected at a time. Note that contrary to the
INTEGER type, the identifier must be used when defining a value like
selected-by-default.

The same readability problems as those evoked on page 133 for the
INTEGER type where both the value and the identifier were called alpha

also apply to the ENUMERATED type. Still, for there is no compatibility
defined between the ENUMERATED type and the INTEGER type, a value of
type ENUMERATED cannot be used to define a value of type INTEGER (and
reverse). Two ENUMERATED types cannot be compatible either.

As mentioned already, contrary to the INTEGER type, the integers
listed after an ENUMERATED type are useful only for encoding. A manual
numbering of the states, especially if this only consists in a trivial in-
crement may seem useless. This is the reason why ASN.1 provides an
automatic numbering for the identifiers (with an initial counter value 0).
Thus the type:

RadioButton ::= ENUMERATED { button1, button2, button3 }

is equivalent to the type RadioButton previously defined. We should
keep in mind that the automatic numbering can annihilate the encoding
compatibility among ENUMERATED types if those are extended by insertion
of new identifiers at the beginning or in the middle of their enumeration
list (the numbers are then accordingly shifted). This is why the notion
of extensibility has been introduced since 19947.

When writing a specification, we can indicate that the ENUMERATED

type can be extended in subsequent versions of this specification by
inserting an extension marker “...” at the end of it. As a result, the
following type RadioButton contrary to that which was defined earlier,

6Other examples of ENUMERATED types are presented in [ISO8824-1, clause C.2.3].
7We shall come back to the notion of extensibility in Section 12.9 on page 244

when we describe the types CHOICE, SEQUENCE and SET.

10 - Basic types 137

System A
Version 1

RadioButton ::= ENUMERATED {
button1,

button2,

button3,

... }

System B
Version 2

RadioButton ::= ENUMERATED {
button1,

button2,

button3,

...,

button4,

button5 }

1 (button2)

3 (button4)

Figure 10.2: Data exchange between two systems whose specification
versions are different

is declared extensible in the first version of the specification:

RadioButton ::= ENUMERATED { button1, button2, button3,

... }
and may be rewritten and extended as:

RadioButton ::= ENUMERATED { button1, button2, button3,

..., button4, button5 }
in a second version.

An ASN.1 compiler would then generate an encoder and a decoder
that could manage a communication between two systems whose respec-
tive protocol versions are different. Figure 10.2 shows that if System A
sends the value 1 for button2, System B can decode it since it knows
(at least) the version 1 of the specification. If System B sends the value
3 for button4, System A does not necessarily know how to decode this
value, which was defined in the version 2 of the specification, but will
recover (discarding the value) and carry on decoding the byte streams
of the data.

The type ABRT-diagnostic on page 135 is an example of an extensible
ENUMERATED type.

A few extra rules on automatic numbering are necessary when the
ENUMERATED type is extensible (these are described in the next ‘Reference
Manual’ section). In particular, the integers after the extension markers
must be listed in increasing order. The following examples illustrate
this:

A ::= ENUMERATED { a, b, ..., c(0) }
-- Impossible: a and c equal 0

B ::= ENUMERATED { a, b, ..., c, d(2) }
-- Impossible: c and d equal 2 (see rule 〈10〉)

C ::= ENUMERATED { a, b(3), ..., c(1) }
-- Correct: c = 1

138 ASN.1 – Communication between Heterogeneous Systems

BER PER

ChoiceOfNull 2 bytes 3 bits

Enumeration 3 bytes 3 bits

Table 10.1: Comparison between the BER and PER encodings of an
enumeration and a choice of NULL types

D ::= ENUMERATED { a, b, ..., c(2) }
-- Correct: c = 2

E ::= ENUMERATED { a, b, ..., c } -- c = 2

F ::= ENUMERATED { a, b, c(0), ..., d } -- d = 3

G ::= ENUMERATED { a, b, ..., c(3), d }
-- d = 4 (see rule 〈10〉 on page 140)

Contrary to the constructed types CHOICE, SEQUENCE and SET, the type
ENUMERATED includes only one extension marker (i.e. new identifiers must
be included at the end of an enumerated list without the version double
square brackets “[[” and “]]”).

An exception marker “!” cannot be associated with the extension
marker “...” as the notation stands at present, but this will be
changed in the near future.

In a specification dealing with a multimedia protocol (with PER en-
coding, see Chapter 20), types with the following syntax can occasionally
be found8:

ChoiceOfNull ::= CHOICE { e1 NULL,

e2 NULL,

e3 NULL,

e4 NULL,

e5 NULL,

e6 NULL }

although one might have preferred:

Enumeration ::= ENUMERATED { e1(1), e2(2), e3(3), e4(4),

e5(5), e6(6) }

Table 10.1 shows that although the type ChoiceOfNull is not as easily
read and interpreted in that case, its PER encoding has the same length
(3 bits) as the type Enumeration.

8This type is supposed to be defined in a module which includes the AUTOMATIC

TAGS clause in its header.

10 - Basic types 139

10.4.2 Reference Manual

Type notation

EnumeratedType → ENUMERATED “{” Enumerations “}”
〈1〉 This type has tag no. 10 of class UNIVERSAL.
〈2〉 The type ENUMERATED can be constrained by a single value (produc-
tion SingleValue on page 261) and by type inclusion (production Con-
tainedSubtype on page 263).
〈3〉 Two ENUMERATED types cannot be compatible according to the seman-
tic model of ASN.1 (see Section 9.4 on page 121) if their named number
lists are different (i.e. with different identifiers or different numbers).
〈4〉 When an ENUMERATED type with a named number list is imported into
another module, the identifiers in this list are imported too. These can
only be used to define a value of this type.

Enumerations → RootEnumeration

| RootEnumeration “,” “...” ExceptionSpec

| RootEnumeration “,”

“...” ExceptionSpec “,”

AdditionalEnumeration

〈5〉 The extension marker “...” was added in 1994.
〈6〉 Contrary to the extensible types CHOICE, SEQUENCE and SET, the
version square brackets “[[” and “]]”, and the second extension marker
“...” are not allowed in Enumerations.
In the near future [ISO8824-1DTC2], an exception marker “!” will be
allowed with the extension marker “...” to let the application know
that the received value conforms neither to the extension root nor to
the extensions so that this exception could be handled by a bespoke
routine (see on page 247).

RootEnumeration → Enumeration

〈7〉 In the RootEnumeration, the integers are neither necessarily ordered,
nor necessarily successive.

AdditionalEnumeration → Enumeration

〈8〉 In AdditionalEnumeration (i.e. after the extension marker “...”),
the integers must be ordered but not necessarily successive.
〈9〉 In AdditionalEnumeration, every explicit value (SignedNumber) or
referenced value (DefinedValue) must be different from all the explicit,

140 ASN.1 – Communication between Heterogeneous Systems

referenced or calculated values (see rule 〈12〉 on the current page) that
precede it in the RootEnumeration.
〈10〉 In AdditionalEnumeration, every explicit, referenced or calculated
value must be greater than any of the values (explicit, referenced or
calculated) that precede it syntactically in AdditionalEnumeration.

Enumeration → EnumerationItem “,” · · ·+
EnumerationItem → identifier

| NamedNumber

〈11〉 The identifiers can be enumerated without systematically associat-
ing an integer to them explicitly.
〈12〉 Each identifier that is not followed by a value in round brackets
is assigned an integer, by one-increment starting from 0 but excluding
those (explicit, referenced or calculated) already used in the NamedNum-
bers that precede it syntactically. The extension marker “...” does not
affect this procedure for allocating integers.

NamedNumber → identifier “(” SignedNumber “)”
| identifier “(” DefinedValue “)”

〈13〉 In Enumerations, the identifiers must be distinct.
〈14〉 DefinedValue should be of type INTEGER.
〈15〉 The lexeme DefinedValue cannot be interpreted as an identifier
defined in the ENUMERATED type since an identifier cannot appear in
round brackets.

Value notation

EnumeratedValue → identifier

〈16〉 identifier must be one of those appearing in the associated Enumer-
atedType.
〈17〉 The existence of an extension marker “...” in the associated Enu-
meratedType does not alter the previous rule.

10.5 The REAL type

10.5.1 User’s Guide

The real numbers are just like the other real numbers in information
technology: they should be called decimals! The type REAL in ASN.1

10 - Basic types 141

can model arbitrarily long but finite decimals. There is nothing pre-
venting us from using the REAL type to transmit the first ten thousand
decimals of π! The transmission of numbers with an infinite decimal
part like 1

3 , π or e, however, would require an appropriate if not ded-
icated model. From the specifier’s viewpoint, a definition such as the
following is perfectly fine9:

ExtendedReal ::= CHOICE {

decimal REAL,

particular-real ENUMERATED {one-third, pi, e, ...} }

where it is up to the communicating applications to use their own rep-
resentation for the real numbers with an infinite decimal part. In prac-
tice, the REAL type is hardly ever used in ASN.1 specifications, mostly
because it does not provide the well-known notation with a dot like 3.14

(but this is going to be amended soon as we will see on page 143).

In fact, all the real numbers in ASN.1 can be written m× be where
the mantissa m is of type INTEGER, the base b equals 2 or 10 and the
exponent e is also a number of type INTEGER. We have for example:

pi REAL ::= { mantissa 314159, base 10, exponent -5 }

e REAL ::= { mantissa 271828128459045235360287,

base 10,

exponent -23 }

zero REAL ::= 0

The identifiers mantissa, base and exponent must be used in the
definition of real values since the 1994 standard. Indeed, in ASN.1:1994,
the REAL type has been defined as if it were semantically equivalent to
the type:

SEQUENCE { mantissa INTEGER (ALL EXCEPT 0),

base INTEGER (2|10),

exponent INTEGER }

but with a specific tag of class UNIVERSAL10. It makes it possible for an
encoding different from that of the generic SEQUENCE type to be associated
with it.

9We will see in Chapter 18 that encoding rules for the REAL type may theoretically
be extended to include these particular real values (the ‘real’ difficulty would then be
to decide which of these values should be kept for the standard).

10The tags of class UNIVERSAL are defined in Table 12.1 on page 209.

142 ASN.1 – Communication between Heterogeneous Systems

In ASN.1:1990 (the REAL type did not exist in ASN.1:1984), the three
values above mentioned were written:

pi REAL ::= { 314159, 10, -5 }
e REAL ::= { 271828128459045235360287, 10, -23 }
zero REAL ::= 0

The real value zero cannot be represented by means of a 3-tuple
〈mantissa, base, exponent〉 where the mantissa would equal zero (i.e. the
real 0 of ASN.1 is neither in base 2, nor in base 10). The necessity11 of
denoting it 0 can be taken advantage of to associate a specific encoding
with this value. A REAL value can also be defined with the keywords
PLUS-INFINITY or MINUS-INFINITY to denote the particular values +∞ or
−∞ (contrary to the INTEGER type, any value from the whole range of
the decimal numbers can be modeled).

Apart from the three previous values, the type INTEGER (2|10) of the
base component states that ASN.1 real numbers can be represented12

either in base 2, which is similar to the processor internal storage of
floats, or in base 10 for a more classical representation.

Note, however, that the two abstract values {mantissa 5, base 2,

exponent 0} and {mantissa 5, base 10, exponent 0}, though denoting
the same real number 5, cannot be considered as having the same
semantics from the communicating application’s viewpoint (we will see
in Part III debating the encoding rules and beginning on page 391, that
these two values’ encoding are different, even with canonical encoding
rules like DER or canonical PER).

If this representation of the real numbers in 3-tuples is judged awk-
ward to use, it is possible to provide real numbers to the encoder via an
MMI similar to the one which was designed by the X/Open [TMF96]
consortium, using one of the following representations of the [ISO6093]
standard:

• NR1: “3”, “-1”, “+1000”;

• NR2: “3.0”, “-1.3”, “-.3”;

• NR3: “3.0E1”, “123E+100”.
11The lexeme 0 should not be confused with the zero value of type INTEGER since

the type that governs an ASN.1 value is always known.
12If a number has a finite representation in base 2, it has a finite representation in

base 10, but the reverse is not correct; see, for example, the following counter-example:
0.210 = 0.00110011...2 = 0.[0011]2.

10 - Basic types 143

The NR1 (Numerical Representation 1) is the fixed decimal point
representation: the decimal place is implicit and predefined. The NR2
format is the non-graded representation with explicit decimal point: it
corresponds to the usual writing using the dot or the comma as the
decimal separator. The NR3 format is the graded representation with
explicit decimal point: it includes a signed exponent (base 10) that may
be followed by an optional letter e or E.

The ASN.1 working group have considered the possibility of allowing
the usual notation that uses a decimal point for defining REAL values.
If this proposition is accepted [ISO8824-1DTC3], it will be possible to
write for example:

pi REAL ::= 3.14

Since 1994 (the year when the REAL type was semantically defined
with a SEQUENCE type, see on page 141), it has been possible to constrain
REAL types very precisely to make communicating systems interwork
more easily. It allows to keep only the binary representations that are
the closest to floating-point processors (see Section 18.2.5 on page 400)
and are thus the most common:

BinaryReal ::= REAL (WITH COMPONENTS {..., base (2)})
or even restrict all the three components at once:

RestrictedReal ::= REAL (WITH COMPONENTS {

mantissa (-16777215..16777215),

base (2),

exponent (-125..128) })

Finally, as mentioned already while introducing the INTEGER type, an
INTEGER value cannot be used to define a REAL value. The declaration of
the value real below is therefore erroneous:

integer INTEGER ::= 5

real REAL ::= integer -- forbidden

10.5.2 Reference Manual

Type notation

RealType → REAL

〈1〉 This type has tag no. 9 of class UNIVERSAL.

144 ASN.1 – Communication between Heterogeneous Systems

〈2〉 Since 1994, the REAL type has been semantically equivalent to the
type:

[UNIVERSAL 9] IMPLICIT SEQUENCE {
mantissa INTEGER (ALL EXCEPT 0),

base INTEGER (2|10),
exponent INTEGER }

〈3〉 The REAL type can be constrained by a single value (production
SingleValue on page 261), by type inclusion (production ContainedSub-
type on page 263), by interval (production ValueRange on page 265)
and, since 1994, by constraints on the components of the SEQUENCE

type (production InnerTypeConstraints on page 277). Examples of
subtyping have been given in the ‘User’s Guide’ section above.
〈4〉 If a REAL type is contrained by InnerTypeConstraints (see on
page 277), this subtype constraint does not apply on the particular
values O, MINUS-INFINITY and PLUS-INFINITY (the operator EXCEPT on
page 290 must be used to forbid one of them).

Value notation

RealValue → NumericRealValue
| SpecialRealValue

NumericRealValue → 0

| SequenceValue

〈5〉 SequenceValue cannot represent the value 0 because the value 0 in
ASN.1 is neither in base 2 nor in base 10.
〈6〉 SequenceValue must be a value conforming to the SEQUENCE type
associated with the REAL type and defined in rule 〈2〉 on this page.
〈7〉 The name of the components mantissa, base and exponent (see
rule 〈2〉 on the current page) did not exist in ASN.1:1990 and a REAL

value was written ‘{ m, b, e }’.
〈8〉 A communicating application can associate two different semantics
with two different RealValues that denote the same real number when
one of those is in base 2 while the other is in base 10.

SpecialRealValue → PLUS-INFINITY

| MINUS-INFINITY

10 - Basic types 145

10.6 The BIT STRING type

10.6.1 User’s Guide

In order to comply with the esprit libertaire of ASN.1, the binary string
can be of null length... or arbitrarily long. The BIT STRING type (two
words, no dash) is used to transmit data that are inherently binary
(a compressed facsimile or encrypted data, for example) or to model
boolean vectors (a list of choices in an MMI window as in Figure 10.3
on the following page). The BIT STRING type should be used only when
it is absolutely necessary.

In the [X.509] standard of the directory service, we find the type:

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING }

to transmit identification public key and the corresponding encryption
algorithm.

A binary string is presented in quotes and followed by the capital
letter B if it is made of binary digits (0 or 1) or the capital letter H if these
are hexadecimal digits (from 0 to 9 and from A to F in upper-case letters
only). Since 1994, if a long string should appear as an abstract value in
an ASN.1 module, it can be split across lines and may therefore include
tabulations, newlines and spaces (which, of course, are meaningless):

pi-decimals BIT STRING ::=

’00100100001111110110101010001000100001

01101000110000100011010011000100110001

100110001010001011100000001101110000’B

pi-decimals BIT STRING ::=

’243F6A8885A308D313198A2E0370’H

Concerning the ordering of the bits, the following convention was
adopted: the first bit of the string is the one on the left-hand side (po-
sition 0) and the last bit is the one on the right-hand side. Of course,
this convention has no implication whatsoever on the ordering of the
bits handled by the communicating applications or by the communica-
tion medium. Indeed, “‘all true believers shall break their eggs at the
convenient end’: and which is the convenient end, seems, in my humble
opinion, to be left to every man’s conscience, or at least, in the power
of the chief magistrate to determine”. This quote of Swift’s Gulliver’s
travels should remind the reader of our discussion on page 8, concerning
the agreement on the bit orders.

146 ASN.1 – Communication between Heterogeneous Systems

Rights: ¤ user-read

¤ user-write

£ group-read

£ group-write

¤ other-read

¤ other-write

Figure 10.3: Block of check boxes

The size of the binary strings should be limited whenever possible
using a subtype constraint so that the encoder and the decoder should
allocate the adequate number of blocks but also make the encoding more
compact:

StringOf32Bits ::= BIT STRING (SIZE (32))

ASN.1 offers a particular syntax for the BIT STRING type to declare
special positions of bits using round brackets. The value definition for
such types consists in listing in curly brackets (again!) the position of
the bits set to 1 (the positions that are not mentioned or not at the
end of the string take the default value 0, and the value ‘{}’ represents
the empty binary string ’’B or ’’H). This syntax can easily model the
rights attributed to a file in the UNIX operating system (reading and
writing for the owner, for the owner’s group and for the other users)
whose representation is given on Figure 10.3:

Rights ::= BIT STRING { user-read(0), user-write(1),

group-read(2), group-write(3),

other-read(4), other-write(5) }

group1 Rights ::= { group-read, group-write }

These values can always be defined as bit or hexadecimal strings; in
this case, positions other than those named in the type can have the
value 1 as illustrated with the value weird-rights:

group2 Rights ::= ’0011’B

group2 Rights ::= ’3’H

group3 Rights ::= ’001100’B

weird-rights Rights ::= ’0000001’B

These examples call for three remarks concerning the definition of
the type Rights:

• the list of named bits does not influence the set of abstract values
of this type;

10 - Basic types 147

• the list of named bits is not restrictive (the positions are actually
not necessarily consecutive13); no size constraint is implicit as seen
in the value weird-rights on the preceding page;

• the trailing zero bits are not significant14 and the value group2

and group3 represent the same value as group1; the zero bits at
the beginning of the string are obviously compulsory so that the
bits 1 could properly be positioned.

Because the named bit list implies no constraint on the size of the
type, the application should be able to receive a value whatever the
number of zeros added at the end (for example, ’001100000’B as a value
for the type Rights). Canonical encoding rules like DER or canonical
PER, remove these bits to ensure canonicity (only if the type has a list
of named bits, of course).

This convention can be easily extended to the ‘named bit list’ case
if the trailing zeros are agreed on to correspond to the status quo: the
values that conformed to the old version remain valid for the new one.
Note, however, the reverse problem: if the zero bits have to remain
significant in the next version of the protocol that is being modeled,
it becomes impossible to associate a list of named bits with the BIT

STRING type.

Contrary to the ENUMERATED type, all identifiers of the bit positions
should have an associated number because these positions are not nec-
essarily consecutive so that there can be no automatic numbering pro-
cedure by default. Besides, the list of the named positions cannot be
declared as extensible using the extension marker “...”.

If these identifiers are not properly chosen, the specification can be
more difficult to read as in the following example:

alpha INTEGER ::= 1

BinaryString ::= BIT STRING { alpha(3), beta(alpha) }
13This is the case, for example, for the type:

ShinyDays ::= BIT STRING { first(1), last(31) }
where the positions of first and last have been specified only to make the meaning
of this type more explicit, but do not limit the size of the strings to 32 bits (including
the bit in position 0).

14The constraint on these bits has been relaxed since 1988 to solve interworking
problems encountered before this date.

148 ASN.1 – Communication between Heterogeneous Systems

In the type BinaryString, the word alpha in round brackets cannot be
the name of a bit position and therefore equals 1.

The BIT STRING type with named positions is very often used to in-
dicate the protocol versions supported by a communicating application:

Versions ::= BIT STRING { version-1(0), version-2(1) }

In the specifications of a multimedia protocol (with PER encoding),
we may sometimes come accross types of the following form15:

BooleanSequence ::= SEQUENCE { b1 BOOLEAN,

b2 BOOLEAN,

b3 BOOLEAN,

b4 BOOLEAN,

b5 BOOLEAN,

b6 BOOLEAN }

whereas, we would rather have written:

BooleanVector ::= BIT STRING { b1(0), b2(1), b3(2),

b4(3), b5(4), b6(5) }

Table 10.2 on the next page shows that the encoding of the
BooleanSequence type in PER is significantly more compact than for
the BooleanVector type. But one has only to constrain the size of
the latter to realize that the BooleanSequence type is not quite a good
idea: its PER encoding has exactly the same length (6 bits) as the type
BooleanVector(SIZE (6)).

We already came up against this problem with the types ENUMERATED

and CHOICE (see Table 10.1 on page 138). It is at least reassuring to know
that we can specify in ASN.1 without paying (too much!) attention to
the way the data are encoded. We shall see, however, in Chapter 20 that
the PER do actually give a really compact encoding only if the types
involved are properly subtyped.

Finally, we conclude these examples with the empty string:

all-wrong BooleanVector (SIZE (6)) ::= {}

In this case, it should be noted that the value will be encoded on 6 bits
(in DER and PER notably) as the value ’000000’B.

15This type is assumed to be defined in a module that includes the clause AUTOMATIC

TAGS in its header.

10 - Basic types 149

BER PER

BooleanSequence 20 bytes 6 bits

BooleanVector 4 bytes 14 bits

BooleanVector(SIZE (6)) 4 bytes 6 bits

Table 10.2: Encoding length of a 6-bit string (’111111’B)

When it should be transmitted a value specified in an abstract no-
tation other than ASN.1 or encoded according to encoding rules dif-
ferent from those used for the global specification (this value is ac-
tually available as a bit or byte string), a subtype constraint such as

CONTAINING/ENCODED BY (see Section 13.10 on page 283) should be pre-
ferred for switching to some other abstract or transfer syntax.

A BIT STRING type cannot be compatible with the OCTET STRING type
introduced in Section 10.7 on page 151.

10.6.2 Reference Manual

Type notation

BitStringType → BIT STRING

| BIT STRING “{” NamedBit “,” · · ·+ “}”
〈1〉 This type has tag no. 3 of class UNIVERSAL.
〈2〉 This type can be constrained by a single value (production Single-
Value on page 261), by type inclusion (production ContainedSubtype on
page 263), by size (production SizeConstraint on page 267) and by a
constraint on its content (see Section 13.10 on page 283).
〈3〉 When a BIT STRING type with a named bit list is imported into an-
other module, the identifiers of this list are imported too. These identi-
fiers can only be used to define a value of this type.
〈4〉 Two BIT STRING types are compatible according to the semantic
model of ASN.1 (see Section 9.4 on page 121) even if their associated
named bit lists are not identical.
〈5〉 When a special encoding is necessary for an abstract value or when a
value is specified in a notation different from ASN.1, it is recommended
to use a BIT STRING or OCTET STRING type with a subtype constraint of
the form CONTAINING/ENCODED BY (see Section 13.10 on page 283).

NamedBit → identifier “(” number “)”
| identifier “(” DefinedValue “)”

150 ASN.1 – Communication between Heterogeneous Systems

〈6〉 The identifiers of the NamedBits must be distinct, whether they are
implicit (number) or referenced (DefinedValue).
〈7〉 The bit positions of the NamedBits must be distinct.
〈8〉 The ordering of the NamedBits is not significant.
〈9〉 The maximum value appearing in the list of the NamedBits does
not limit the string length.
〈10〉 DefinedValue must be of type INTEGER.
〈11〉 DefinedValue must be positive.
〈12〉 The lexeme DefinedValue cannot be interpreted as an identifier of
a BIT STRING type since an identifier cannot be written in round brackets.

Value notation

BitStringValue → bstring
| hstring
| IdentifierList

〈13〉 The bit in position 0 is the most left-handed (also called high-order
or most significant bit).
〈14〉 In the hstring notation, the high-order bit of each hexadecimal digit
corresponds to the first bit (left-handed) in the binary string.
〈15〉 If the IdentifierList is used (and only in this case) the encoding rules
may add or remove zeros at the end of the string (trailing bits). Indeed,
in this case, only the named positions are significant for the application.
Designers should then make sure that the presence or absence of trailing
zeros remains meaningless for the application (no semantics should be
associated with this). This rule has been changing depending on the
versions of the ASN.1 standard; it should therefore be applied with
great care.

IdentifierList → “{” identifier “,” · · ·∗ “}”

〈16〉 Each identifier must be the same as one of the identifiers of the
corresponding BitStringType.
〈17〉 The identifiers that are present give the positions of the bits that
equal 1; all the other bits equal 0.

10 - Basic types 151

10.7 The OCTET STRING type

10.7.1 User’s Guide

In ASN.1, an octet string, like a binary string, can be arbitrarily long.
One might have expected the name BYTE STRING for this type, but as
all memory-words do not have 8 bits on all computers, ISO preferred
the French word “octet”. Indeed, as ASN.1 is meant to be system-
independent, the format of a string cannot be restricted to a specific
internal representation mode. As a convention, an ASN.1 octet string
always comprises (sometimes implicitly) a number of bits that is a mul-
tiple of 8.

Generally, the OCTET STRING type is used to transmit data that are
intrinsically binary (which can be divided into 8-bit packets). An octet
string is represented in quotes and followed by the capital letter B if it is
made of binary numbers (0 or 1) or followed by the letter H if it is made
of hexadecimal digits (from 0 to 9 and from A to F in upper-case letters
only). For the encoding, a sufficient number of 0s completes the binary
string (for example, one trailing 0 is added if the number of hexadecimal
components is odd) to reach a number of bits that is a multiple of 8.

icon OCTET STRING ::= ’001100010011001000110011’B

icon OCTET STRING ::= ’313233’H

In the binary form, the most left-handed bit is the high-order (or
most significant) bit of the first byte. In the hexadecimal notation, the
digit is the most significant half-byte of the first byte. Contrary to the
BIT STRING type, the OCTET STRING type does not give the possibility of
naming the bit or byte positions by a list in curly brackets.

As the venerable ancestor of ASN.1, the [X.409] standard enabled to
specify the octet string in double quotes like a character string. However,
the alphabet was not specified and the interpretation of the characters
was not straightforward when escape characters were used16. This op-
tion was not adopted by ASN.1 and such usage is not allowed even
though it can be frequently found in Internet RFCs, as [RFC1213] for
example.

Concerning the transmission of character strings, ASN.1 provides

16The [X.409] standard indicated in its clause 5.4 that “the interpretation of this
second form is context-specific. Every use of it must be accompanied by a detailed
specification of the characters that are allowed, their graphical depictions, and their
representations as sequences of octets”.

152 ASN.1 – Communication between Heterogeneous Systems

numerous types of character strings described in Chapter 11 and we
recommend to use one of those whenever possible: the alphabet is clearly
defined and some types use an optimized encoding.

Likewise, the OCTET STRING type should be neither used to transmit
a value related to another abstract syntax nor encoded according to a
transfer syntax different from that of the current specification; neither
should it be described in a formalism other than ASN.1. Unfortunately,
we very often come across such a use of ASN.1 in telecommunication
network signalling for example. In Chapter 14, we will introduce the
presentation context switching types, which aim at modeling embedded
values.

However, since the constructions mentioned in the previous para-
graph are quite often used by designers, the ASN.1 working group now
consider defining two new subtype constraints to be associated to the
type OCTET STRING. This would enable them to specify the type of the
embedded value and the encoding rules that are used to produce the
octet string (see Section 13.10 on page 283):

T ::= OCTET STRING (CONTAINING U ENCODED BY

{joint-iso-itu-t asn1(1) base-encoding(1)}) -- BER

-- U is a type defined in the specification

More generally, the use of the OCTET STRING type should always be
the last resort once all the other ASN.1 types have been discarded as
inappropriate models of the problem in hand.

The size of the octet strings should be limited using a subtype con-
straint so that both the encoder and the decoder could allocate the
adequate memory space but sometimes also to make the encoding more
compact:

StringOf5Octets ::= OCTET STRING (SIZE (5))

Finally, there is no compatibility between the types OCTET STRING

and BIT STRING

10.7.2 Reference Manual

Type notation

OctetStringType → OCTET STRING

〈1〉 This type has tag no. 4 of class UNIVERSAL.
〈2〉 This type can be constrained by a single value (production

10 - Basic types 153

SingleValue on page 261), by type inclusion (production ContainedSub-
type on page 263), by size (production SizeConstraint on page 267) and
by a constraint on its content (see Section 13.10 on page 283).
〈3〉 When a special encoding is necessary for an abstract value or when a
value is specified in a notation different from ASN.1, it is recommended
to use a BIT STRING or OCTET STRING type with a subtype constraint of
the form CONTAINING/ENCODED BY (see Section 13.10 on page 283).

Value notation

OctetStringValue → bstring
| hstring

〈4〉 If the binary string does not contain a multiple of 8 bits, a sufficient
number of zeros completes the string on the right-hand side (to reach
the next multiple of 8).
〈5〉 In the bstring notation, the most left-handed bit should be the high-
order (or most significant) bit of the first byte.
〈6〉 If hstring does not include an even number of hexadecimal digits, a
0 digit completes the string on the right-hand side.
〈7〉 In the hstring notation, the most left-handed hexadecimal digit
should be the most significant half-byte of the first byte.

10.8 The OBJECT IDENTIFIER type

Taxonomy can make your head spin. It does mine whenever my
eyes light on an index of the Universal Decimal Classification (UDC).
By what succession of miracles has agreement been reached, practically
throughout the world, that

668.184.2.099
shall denote the finishing of toilet soap, and

629.1.018-465
horns on refuse vehicles; whereas

621.3.027.23,
621.436:382,

616.24-002.5-084,
796.54, and

913.15
denote respectively: tensions not exceeding 50 volt, the export trade in
Diesel motors, the prophylaxy of tuberculosis, camping, and the ancient
geography of China and Japan!

Think/Classify, Classifications, by Georges Perec, translated by John
Sturrock, in Species of Spaces and Other Pieces

154 ASN.1 – Communication between Heterogeneous Systems

10.8.1 User’s Guide

Programming languages often have a pointer mechanism to reference
variables and structures of the language. The ASN.1 notation offers
an even more powerful concept of universal pointers (but without a
dereferencing operator as we shall see very shortly): this is the OBJECT

IDENTIFIER type. In the previous sentence, the term ‘universal’ refers
to the ‘physical space’ where the reference may point to, as well as
to the nature of these objects. Indeed, ASN.1 imposes no constraint
on the objects17 that can be referenced apart from defining such an
object as “a well-defined piece of information, definition, or specification
which requires a name in order to identify its use in an instance of
communication”.

As for the [ISO9834-1] standard (see below), which gives the
general registration procedures for these objects, it defines an object as
“anything in some world, generally the world of telecommunications and
information processing or some part thereof, which is identifiable (can
be named); and which may be registered”.

An object identifier can be (the list is not exhaustive):

• an abstract syntax, which must be registered to be used unam-
biguously on a Presentation connection (layer 6 of the OSI model)
[ISO8822, annex B];

• a transfer syntax (or a collection of encoding rules, see footnote 12
on page 15), which must be registered under an unambiguous ref-
erence to be able to use abstract syntaxes on a Presentation con-
nection18 [ISO8823-1, annex B];

• an application entity [ISO7498-3];

• an ASN.1 module (see on page 163);

• a ROSE operation [ISO9072-2] (see on page 80);

17We should be cautious about the objects that are discussed here: the object
identifiers and the information objects defined in Chapter 15 should not be confused
even though an information object can be referenced through an object identifier.

18When a connection is established, the Presentation layer is in charge of a negotia-
tion to ensure that the two communicating applications agree on the abstract syntax,
the encoding rules and the protocols to be used (see Figure 3.2 on page 22). All these
elements are objects identified by object identifiers.

10 - Basic types 155

• an attribute of the X.500 directory (see on page 83) to make up a
DistinguishedName;

• the type of some part of an [X.400] electronic message body
(ExtendedBodyPart) as in Figure 7.1 on page 82;

• a virtual terminal profile (see on page 81) with its parameters,
modes and control characters for example;

• a managed object class, one of its attributes, a notification or even
other templates19 used in the area of network management and
the GDMO standard [ISO10165-4] presented in Section 23.3 on
page 482.

The registered object should be persistent: an object whose life dura-
tion is short should not be registered. In substance, we may say that an
object is registered whenever we have to give it a ‘name’ that should be
universally unambiguous and when this needs to be available anywhere
in the world.

For example, in the [X.435] standard, which defines the EDI e-mail
system (see on page 88), we find the type assignment:

EDIBodyPartType ::= OBJECT IDENTIFIER

indicating the character set and the EDI standard used in an EDI mes-
sage body. The [X.435] standard also defines the following body formats:

• EDIFACT: ISO 646|Recommendation T.61|UNDEFINED OCTETS

• ANSIX12: ISO 646|Recommendation T.61|EBCDIC|UNDEFINED
OCTETS

• UNTDI: ISO 646|Recommendation T.61|UNDEFINED OCTETS

• PRIVATE: UNDEFINED OCTETS

• UNDEFINED: UNDEFINED OCTETS

Then how should we identify these formats in an unambiguous
way? (Remember that the data exchange can be considered on an
international level.) How can we include new formats for the specific
needs of some company or other without amending the [X.435] standard,

19The name given to every template should be unique for a whole network man-
agement standard or for a specification restricted to a single company. This name,
however, can be used in other specifications although the object identifier associated
with this template should remain (universally) unique.

156 ASN.1 – Communication between Heterogeneous Systems

which is a long and tedious procedure?

The naming scheme needed to address these questions should meet
the following criterions [PC93]:

• scope: the scheme should enable the naming in a local or interna-
tional context, and offer this functionality to the greatest number
of users (the world-wide context cannot be excluded in the case of
open-system interconnection between international companies);

• scale: it has to consider the naming of an unlimited number of
objects using potentially complex names;

• persistence: it has to keep the naming as long as necessary and it
should permit its removal;

• user-friendliness: it should provide a means of sharing these names
on the network but it should also remain intelligible in the speci-
fications.

Several naming schemes could have been proposed but the hierarchi-
cal structure of a tree, which satisfies the criterions above, also has the
following advantages:

• an object can be found easily when selecting only one branch at
each level;

• it reflects the structural properties of the referenced objects but
also, if necessary, those of the standardization organizations or
administrations;

• this flexibility is not altered as the complexity of the tree increases.

For all these reasons, the ASN.1 standard20 has defined a naming hi-
erarchy called registration tree, whose naming rules (the ‘Constitution’)
come from the [ISO9834-1] standard, which gives the procedures for the
OSI registration authorities and defines the registration as “the assign-
ment of an unambiguous name to an object in a way which makes the
assignment available to interested parties”.

Many other formalisms define naming structures with similar
properties: SGML, EDIFACT, CDIF, the distinguished names of

20In fact, this definition was extracted from the ASN.1 standard and has moved to
[ISO9834-1] since late 1996.

10 - Basic types 157

X.500 (for which an object identifier counterpart can be defined jointly
[ISO9834-1, Annex C]), the addresses of the senders and receivers of an
[X.400] e-mail...

The registration tree is based on the same principles as the domains
and sub-domains of Internet e-mail addresses. Each registration author-
ity (i.e. an organization, a standard or an automatic procedure that has
been agreed on at an international, national or local level) in charge of
a tree node respects the following delegated rules:

• it allocates the arcs21 under its own node and delegates its re-
sponsibilities to one or several subordinate authorities22, which
are responsible for these arcs;

• if the arc is a leaf, it is used to name an item of information or
a subpart of it (an object) and the registration authority keeps a
sgort report for this object (see [ISO9834-1, clause 8], for example);

• it sequentially numbers the arcs starting at 0;

• it allocates an identifier23, if needed, to each arc, which is a word
beginning with a lower-case letter, including letters, digits and
dashes;

• it can sometimes have a more technical role in ensuring that the
object can be registered at this level in the tree;

• it maintains a list of the allocated arcs and publishes it regularly;

• if the registration procedures allow it, it deletes and modifies arcs
when needed.

All the object identifiers used in this book respect these rules. They
all begin with the arc {iso member-body(2) f(250) type-org(1) ft(16)

asn1-book(9)} that has actually been allocated in the registration sub-
tree of France Télécom.

The top of this registration tree is presented in Figure 10.4 on
page 161, with the following comments:

21In order to avoid repetitions, we call ‘arc’ both the nodes and the leaves of the
registration tree.

22The same authority can obviously be in charge of several nodes.
23[ISO9834-1] permits the use of other forms to name the arcs as long as there is

no ambiguity. We shall see that this identifier is not compulsory in ASN.1.

158 ASN.1 – Communication between Heterogeneous Systems

• the root has no name but corresponds to the [ISO9834-1] standard;

• the arc itu-t(0)24 is restricted to the ITU-T recommendations
(not jointly published with ISO/IEC), to the PTTs and RPOAs
(Registered Private Operating Authorities); it is divided into:

– recommendation(0) and the sub-arcs a(1) to z(26) for each
ITU-T recommendation series; then, comes an arc for each
recommendation with its number (but no identifier);

– question(1) with, for every four-year period, one branch
per commission, whose number is given by the formula
32×period+commission number, where the period 1984-88
has the number 0 (so that there can be no more than 31
commissions);

– administration(2) reserved for the national administrations
of the ITU-T members [X.121];

– network-operator(3), whose sub-arcs have each a distinct
public network code for packet switching (DNIC) [X.121];

– identified-organization(4) for the international research or
industry organizations registered at ITU-T;

• the arc iso(1) for ISO standards and ISO members; it is managed
by ISO and IEC and is divided into:

– standard(0) where we find an arc for every ISO international
standard (not jointly published with ITU-T);

– the arc registration-authority(1), which has never been
used and was finally abandoned;

– member-body(2) with an arc for each National Body (every
body has a code defined in the [ISO3166-1]25 standard, but
no identifier is given to a body by default), which is free to
allocate the sub-trees;

– identified-organization(3), where a range of labels can be
allocated to international organizations recognized by ISO,
such as the ECMA for example (every one has an interna-
tional code or ICD, with 4 digits [ISO6523]);

24This arc is also called ccitt(0) to recall that CCITT used to be an organization
independent from ITU-T (see Section 6.2 on page 58).

25ftp://ftp.isi.edu/in-notes/iana/assignments/country-codes

ftp://ftp.isi.edu/in-notes/iana/assignments/country-codes

10 - Basic types 159

• the arc joint-iso-itu-t(2), or joint-iso-ccitt(2), includes
around twenty sub-arcs considered as a common standardization
area for ISO/IEC and ITU-T; this arc is managed by ANSI ac-
cording to the [ISO9834-3] standard where we find in particular:

– the arc asn1(1) for the ASN.1 standard, which is managed
by the ASN.1 working group at ISO; some sub-arcs identify
different encoding rules and it is these object identifiers which
are exchanged by the Presentation layers during negotiation
(see Figure 3.2 on page 22):

∗ basic-encoding(1) for the BER,

∗ ber-derived(2) for the CER and the DER,

∗ packed-encoding(3) for the different variants of PER (see
Chapter 20);

– the arc mhs-motif(6) for the [X.400] e-mail presented in Sec-
tion 7.2 on page 81;

– the arc ms(9) (management systems) for network manage-
ment and particularly for the CMIP protocol [ISO9596-1] and
the GDMO standard [ISO10165-4] discussed in Section 23.3
on page 482;

– the arc registration-procedures(17) covers the joint activi-
ties of ISO and ITU-T on registration procedures.

In the registration tree, the nodes correspond to registration author-
ities (which can sometimes be represented by a single person) and the
leaves are the registered objects. A registered object is denoted uniquely
by the names and the numbers of the arcs encountered on the path from
the root of the tree to the leaf. This ‘name’ deduced from the path in
the tree is called object identifier. It is an ASN.1 value of type OBJECT

IDENTIFIER represented in curly brackets with no comma.

Here are some examples:

internet-id OBJECT IDENTIFIER ::=

{ iso(1) identified-organization(3) dod(6) internet(1) }
francetelecom-id OBJECT IDENTIFIER ::=

{ iso member-body f(250) type-org(1) ft(16) }
ber-id OBJECT IDENTIFIER ::= { 2 1 1 }

160 ASN.1 – Communication between Heterogeneous Systems

For the object identifier internet-id26, all the names in curly brack-
ets (also called identifiers) are systematically followed by their respective
numbers in round brackets. These names make the identifiers more in-
telligible for the reader of the specification and the numbers are used by
the encoding procedures to transmit the value.

In the object identifier francetelecom-id, the names iso and
member-body are not followed by their numbers in round brackets. These
standardized identifiers are assumed to be known by the ASN.1 tools
and their number is associated with them automatically by the compiler.
These standardized identifiers, for which the number can be omitted, are
denoted in yellow on Figure 10.4 on the next page.

Finally the object identifier ber-id contains no arc name. Though
sufficient to be encoded, this form is strongly unrecommended since it
is hardly readable.

26In Internet RFCs, the object identifiers are often represented as a charac-
ter string of type OCTET STRING formed by the numbers separated by a dot as in
"1.3.6.1.4.1.1466.115.121.1.5". This does obviously not conform to ASN.1 stan-
dard, had it only been for the fact that it is impossible to define values of type OCTET

STRING as character strings!

10 - Basic types 161

�

i
t
u
-
t
(
0
)

c
c
i
t
t
(
0
)

r
e
c
o
m
m
e
n
d
a
t
i
o
n
(
0
)

a
(
1
)

. . .

z
(
2
6
)

q
u
e
s
t
i
o
n
(
1
)

a
d
m
i
n
i
s
t
r
a
t
i
o
n
(
2
)

n
e
t
w
o
r
k
-
o
p
e
r
a
t
o
r
(
3
)

i
d
e
n
t
i
f
i
e
d
-
o
r
g
a
n
i
z
a
t
i
o
n
(
4
)

i
s
o
(
1
)

s
t
a
n
d
a
r
d
(
0
)

m
e
m
b
e
r
-
b
o
d
y
(
2
)

f
(
2
5
0
)

t
y
p
e
-
o
r
g
(
1
)

f
t
(
1
6
)

a
s
n
1
-
b
o
o
k
(
9
)

i
d
e
n
t
i
f
i
e
d
-
o
r
g
a
n
i
z
a
t
i
o
n
(
3
)

j
o
i
n
t
-
i
s
o
-
i
t
u
-
t
(
2
)

j
o
i
n
t
-
i
s
o
-
c
c
i
t
t
(
2
)

a
s
n
1
(
1
)

s
p
e
c
i
f
i
c
a
t
i
o
n
(
0
)

m
o
d
u
l
e
s
(
0
)

i
s
o
1
0
6
4
6
(
0
)

c
h
a
r
a
c
t
e
r
S
t
r
i
n
g
s
(
1
)

b
a
s
e
-
e
n
c
o
d
i
n
g
(
1
)

b
e
r
-
d
e
r
i
v
e
d
(
2
)

c
a
n
o
n
i
c
a
l
-
e
n
c
o
d
i
n
g
(
0
)

d
i
s
t
i
n
g
u
i
s
h
e
d
-
e
n
c
o
d
i
n
g
(
1
)

p
a
c
k
e
d
-
e
n
c
o
d
i
n
g
(
3
)

b
a
s
i
c
(
0
)

a
l
i
g
n
e
d
(
0
)

u
n
a
l
i
g
n
e
d
(
1
)

c
a
n
o
n
i
c
a
l
(
1
)

a
l
i
g
n
e
d
(
0
)

u
n
a
l
i
g
n
e
d
(
1
)

m
h
s
-
m
o
t
i
f
(
6
)

m
s
(
9
)

se
e

S
ec

ti
on

23
.3

on
p

ag
e

48
2

F
ig

u
re

10
.4

:
T

op
of

th
e

IS
O

re
gi

st
ra

ti
on

tr
ee

(i
d

en
ti

fi
er

s
in

ye
ll

ow
ca

n
b

e
u

se
d

w
it

h
ou

t
th

ei
r

as
so

ci
at

ed
n
u

m
b

er
)

162 ASN.1 – Communication between Heterogeneous Systems

When several objects have to be registered under the same node,
repeating the absolute path name for every single object identifier can
be a tedious work since all of them begin with the same path from the
root of the tree. ASN.1 allows the possibility of indicating as the first arc
of an object identifier, the name of a value of type OBJECT IDENTIFIER

whose content is inserted at the beginning of this object identifier.

Hence it can be defined by giving only the relative path from the
inserted object identifier (this notion of relative path should not be con-
fused with the REALTIVE-OID type defined in the next section; here, the
entire path is encoded even if a relative path is used in the abstract
notation). As a result, if we go back to the type EDIBodyPartType pre-
sented on page 155, Appendix A of the [X.435] standard associates the
following object identifiers with the various formats of an EDI message
body:

ID ::= OBJECT IDENTIFIER

id-edims ID ::= { joint-iso-itu-t mhs-motif(6) edims(7) }
id-bp ID ::= { id-edims 11 }
id-bp-edifact-ISO646 ID ::= { id-bp 1 }
id-bp-edifact-T61 ID ::= { id-bp 2 }
id-bp-edifact-octet ID ::= { id-bp 3 }
id-bp-ansiX12-ISO646 ID ::= { id-bp 4 }
id-bp-ansiX12-T61 ID ::= { id-bp 5 }
id-bp-ansiX12-ebcdic ID ::= { id-bp 6 }

The object identifier id-edims is first inserted at the beginning of
the object identifier id-bp to give { joint-iso-itu-t mhs-motif(6)

edims(7) 11 }, and this object identifier id-bp is itself inserted at the
beginning of each object identifier of type of formats of EDI message
body part (note the breakdown structure!).

Each time an object is registered in the registration tree (and, there-
fore, each time an object identifier is allocated), the [ISO9834-1] stan-
dard recommends27 to associate a description with it by means of a char-
acter string of type ObjectDescriptor (see Section 11.15 on page 198).
This literal and more user-friendly description is supposed to be univer-
sally unique even though it cannot be guaranteed. It is some sort of
‘formal’ comment that makes the interpretation of the object identifier
easier and indicates more clearly what is actually referenced. Thus, the

27This advice is actually very rarely taken and information may be added in com-
ments within the ASN.1 module.

10 - Basic types 163

object descriptor associated with the object identifier ber-id of the BER
encoding rules is:

ber-descriptor ObjectDescriptor ::=

"Basic Encoding of a single ASN.1 type"

Let us now talk about the more specific use of object identifiers that
reference ASN.1 module. When a module is registered in the registration
tree, its object identifier is inserted in its header between its name and
the keyword DEFINITIONS:

ModuleName { iso member-body(2) f(250) type-org(1) ft(16)

asn1-book(9) chapter10(2) module0(0) }

DEFINITIONS ::=

BEGIN

-- ...

END

This object identifier can be used for referencing uniquely the mod-
ule; remember a module name is not necessarily unique (see rule 〈2〉 on
page 113). Indeed, how could it be imposed on a specifier not to call
a module with a name any other specifiers would may have given their
modules anywhere else in the world?!

The specifier, of course, registers the module only when it is stable
and has no errors of syntax or semantics left (i.e. when it has been
checked by an ASN.1 compiler). Besides, a module keeps the same
object identifier if it is extended according to the extensibility rules of
Section 12.9 on page 244 that define the extension marker “...”.

In case definitions should be imported from two different modules
with the same name, the object identifier can reference unambiguously
each of these modules:

Homonym { iso member-body(2) f(250) type-org(1) ft(16)

asn1-book(9) chapter10(2) homonym1(1) }

DEFINITIONS ::=

BEGIN

T ::= INTEGER

END

Homonym { iso member-body(2) f(250) type-org(1) ft(16)

asn1-book(9) chapter10(2) homonym2(2) }

DEFINITIONS ::=

BEGIN

T ::= REAL

U ::= BOOLEAN

END

164 ASN.1 – Communication between Heterogeneous Systems

Module1 DEFINITIONS ::=

BEGIN

IMPORTS T FROM Homonym { iso member-body(2) f(250)

type-org(1) ft(16) asn1-book(9)

chapter10(2) homonym1(1) }

U FROM Homonym { iso member-body(2) f(250)

type-org(1) ft(16) asn1-book(9)

chapter10(2) homonym2(2) } ;

V ::= SEQUENCE { integer T,

boolean U }

END

Moreover, in case (though very unlikely) it is needed to import two
definitions with the same name from two modules with the same name,
each one of the definitions can be invoked, within the module body
that is being specified, by the dotted notation for external references
of the form ModuleName.AssignmentName (see Section 9.3 on page 117),
renaming locally one of the two homonyms in the IMPORTS clause:

Module2 DEFINITIONS ::=

BEGIN

IMPORTS T FROM Homonym { iso member-body(2) f(250)

type-org(1) ft(16) asn1-book(9)

chapter10(2) homonym1(1) }

T FROM Surname -- renaming -- { iso member-body(2)

f(250) type-org(1) ft(16) asn1-book(9)

chapter10(2) homonym2(2) };

W ::= CHOICE { integer Homonym.T,

real Surname.T -- local name --}

END

Such renaming poses no problem since the object identifier of a module
suffices to reference it without ambiguity. Our astute readers may have
inferred that such exotic cases rarely occur!

Let us close this section with a few general remarks on object iden-
tifiers and registration procedures.

Although object identifiers look like universal pointers, ASN.1 pro-
vides no dereferencing operator, i.e. there exists no general means of
‘computing’ the content of an object if its object identifier is known.
Similarly, there exists no world-wide database that we may consult to
get the object by simply providing the search engine with an identifier.

10 - Basic types 165

Like the Internet domains, the OSI registration tree is distributed: in the
strict sense of the word, a node only knows its subordinates. However,
an international but distributed directory may be developed relying on
the X.500 recommendation (see Section 7.3 on page 83).

As a consequence, a tool (a compiler for instance) cannot check the
existence of an object identifier. In practice, the object identifiers used
during communication are assumed known by both systems.

It is possible (and some specifications have already abused of this
habit even though such practice is inadvisable) to use identifiers (be-
ginning with a lower-case letter) that are different from those already
registered for an object identifier, as in:

my-per-id OBJECT IDENTIFIER ::= { joint-iso-itu-t

my-asn1(1) my-packed-encoding(3) }

instead of:

per-id OBJECT IDENTIFIER ::= { joint-iso-itu-t

asn1(1) packed-encoding(3) }

In such a case, the number associated with each arc should be indicated,
including the first two levels if these have been renamed. Such renaming
often depends on the business strategy and the public image of com-
panies since some identifiers may have a connotation that they are not
necessarily very willing to keep.

It is allowed to register an object several times on different leaves of
the tree. It is also possible to propose several identifiers (synonyms) for
the same arc even if this is not recommended to avoid confusion in the
future.

Finally, in order to reduce the encoding size (for cost reasons but
also for hardware restrictions related to chips architecture for instance),
a company may be very much interested in having its node as close to the
top as possible. For meeting this need but also because there are several
categories of registration authorities that cannot be taken into account
for the time being in the tree structure, the new RELATIVE-OID type has
been introduced in 1999. It will be presented in the next section.

10.8.2 Reference Manual

Type notation

ObjectIdentifierType → OBJECT IDENTIFIER

166 ASN.1 – Communication between Heterogeneous Systems

〈1〉 This type has tag no. 6 of class UNIVERSAL.
〈2〉 This type can be constrained by a single value (production Single-
Value on page 261) and by type inclusion (production ContainedSubtype
on page 263), even though it is useless in practice. It is recommended
to use the new RELATIVE-OID type instead (see Section 10.9 on the next
page).

Value notation

ObjectIdentifierValue →
“{” ObjIdComponents · · ·+ “}”
| “{” DefinedValue ObjIdComponents · · ·+ “}”

〈3〉 In the second alternative, the reference DefinedValue should only
denote a value of type OBJECT IDENTIFIER or INTEGER (see also rules
〈5〉 and 〈8〉 below). When DefinedValue denotes an OBJECT IDENTIFIER

value, the list of its arcs prefixes the arcs explicitly present in the Ob-
jectIdentifierValue.
〈4〉 ObjectIdentifierValue must contain, maybe once the DefinedValue
has been developed, at least two ObjIdComponents. This restriction is
induced by the BER encoding rules that encode together the first two
arcs of an object identifier (see Section 18.2.8 on page 404).

ObjIdComponents → NameForm
| NumberForm
| NameAndNumberForm
| DefinedValue

〈5〉 DefinedValue denotes here a value of type RELATIVE-OID (see also
rules 〈3〉 and 〈8〉 on the next page). In this case, the ObjIdComponents,
which necessarily precede it, define the reference node from which the
relative object identifier should be concatenated (this reference node can-
not be the root of the registration tree, nor a node immediately under
this root, see rule 〈4〉 on the current page); the following ObjIdCompo-
nents (if present) denote the arcs below the last node of this relative
object identifier.

NameForm → identifier

〈6〉 An identifier should be followed by a bracket (production NameAnd-
NumberForm) except if it is one of the identifiers in yellow in Fig-
ure 10.4 on page 161. The integer associated with every one of these
identifiers in yellow is assumed to be known by ASN.1 tools. This

10 - Basic types 167

integer is set once for all in the [ISO9834-1] standard and cannot be
changed.
〈7〉 As the identifier does not constrain the encoding, it can be modified
for ‘political’ reasons that may concern the organization (even if this is
deprecated). In this case the production NameAndNumberForm must
be used to indicate the associated number.

NumberForm → number
| DefinedValue

〈8〉 DefinedValue references a value of type INTEGER (see rules 〈3〉 and 〈5〉
on the preceding page).
〈9〉 The integer referenced by DefinedValue must be positive.
〈10〉 If DefinedValue is both the reference of a value defined in the cur-
rent module and one of the identifiers in yellow on Figure 10.4 on
page 161, the latter prevails.

NameAndNumberForm → identifier “(” NumberForm “)”

10.9 The RELATIVE-OID type

10.9.1 User’s Guide

In an instance of communication, many transmitted object identifiers
often denote objects registered in the same sub-tree of the registration
tree. Otherwise said, all these identifiers relate to a common reference
node.

In this case, the volume of data to be transmitted can be cut down by
factorizing the beginning of the path from the root of the tree up to this
reference node. For hardware restrictions for example, it is necessary to
reduce the encoding size when transferring data to a chip card or from
satellites. This new type will therefore be appreciated in industries using
narrow bandwidth transmission and real-time systems (Universal Postal
Union, intelligent transportation systems, radio-frequency identification
RFID, etc).

Issued from the Beijing meeting in September 1998, the RELATIVE-OID

type was finalized in Geneva in June 1999. This swiftness of action
in designing the Amendment [ISO8824-1Amd1] shows how quickly the
ASN.1 workgroup can respond to specifiers’ expectations regarding the
features offered by the standard.

168 ASN.1 – Communication between Heterogeneous Systems

Thus, in the field of radio-frequency identification (see on page 92),
electronic tags can provide several information containers. A whole class
of containers, for example, can be referenced by a single object identifier
while every one of its individual containers is identified by a relative
object identifier, thereby reducing the data size when several containers
of this class have to be transmitted.

There exists no way of associating formally (i.e. denoting) the ref-
erence node’s object identifier to a RELATIVE-OID type in ASN.1 specifi-
cations. Indeed, in practice this object identifier is always known in one
way or another by the two communicating applications. In the rest of
this section, we shall give a few tips for using this type to illustrate our
point.

The type:

RELATIVE-OID -- { iso member-body(2) f(250) type-org(1)

-- ft(16) asn1-book(9) }

allows only (relative) object identifiers registered in the sub-tree whose
object identifier is indicated in comments (all the object identifiers as-
signed to this book are therefore appropriate values for this type). Only
the final part is transmitted. As shown in the example above, comments
are inserted in the ASN.1 module to declare the reference node. This
alternative should be retained for specifications related to a particular
application domain or if these data are static, that is to say if they do
not change during the communication.

In other cases, a basic standard provides a generic protocol using a
parameterized type (in the same way as ROSE, where the parameter is
an information object set, see Chapter 17). Then a specific standard
imports this parameterized type so that all the object identifiers of this
standard have a common root that is statically known and thus needs
not be encoded.

A most complex case arises when the reference node’s object iden-
tifier has to be communicated at ‘run-time’. The comment associated
with the RELATIVE-OID type would then indicate the name of some other
component in charge of the transmission of this object identifier as in:

SEQUENCE {

reference-node OBJECT IDENTIFIER DEFAULT { iso

member-body(2) f(250) type-org(1)

ft(16) asn1-book(9) },

relative-oids SEQUENCE OF RELATIVE-OID

-- relative to reference-node -- }

10 - Basic types 169

The reference node is only present dynamically during communication; it
is shared by all the relative object identifiers provided to the component
relative-oids.

One may also use a user-defined constraint introduced by the key-
words CONSTRAINED BY (see Section 13.13 on page 294).

Finally, an application can optimize the relative object identifier
transmission when the root is known beforehand while keeping the pos-
sibility of using absolute object identifiers. To do so, we use the type:

CHOICE { absolute-oid OBJECT IDENTIFIER,

relative-oids RELATIVE-OID }

The root constraint (introduced by the keyword ROOT) that was pro-
posed at the same time as the RELATIVE-OID type and whose purpose
was to restrict the set of values of the types OBJECT IDENTIFIER and
RELATIVE-OID has not been standardized in the end.

10.9.2 Reference Manual

Type notation

RelativeOIDType → RELATIVE-OID

〈1〉 The RELATIVE-OID type has tag no. 13 of class UNIVERSAL. It has been
introduced in 1999 by an amendment on ASN.1:1997 [ISO8824-1Amd1].
〈2〉 This type can be constrained by a single value (production Single-
Value on page 261) and by type inclusion (production ContainedSubtype
on page 263). The reference node of all the values and all the types
appearing in subtype constraints (and therefore in value sets of
RELATIVE-OID type, see on page 333) must be the same as the reference
node of the governing type.
〈3〉 The reference node of all the relative object identifiers (i.e. the
node from which the relative object identifiers start) must be denoted
in a comment within the specification (see rule 〈5〉 on page 101), in the
documentation associated with the protocol or with an object identifier
transmitted in the same communication instance. This reference node
cannot be the root of the registration tree nor a node immediately
beneath this root (see rule 〈4〉 on page 166).

Value notation

RelativeOIDValue → “{” RelativeOIDComponents · · ·+ “}”

170 ASN.1 – Communication between Heterogeneous Systems

RelativeOIDComponents → NumberForm
| NameAndNumberForm
| DefinedValue

〈4〉 DefinedValue references a value of type RELATIVE-OID (see also
rule 〈5〉 on this page). In this case, the RelativeOIDComponents that
may precede it define the (relative) reference node from which the rela-
tive object should be concatenated (this node cannot be the root of the
registration tree nor a node immediately beneath this root, see rule 〈4〉
on page 166); the RelativeOIDComponents that may follow it denote
the arcs under the last node of this referenced relative object identifier.

NumberForm → number
| DefinedValue

〈5〉 DefinedValue is here a reference to a value of type INTEGER (see also
rule 〈4〉 on this page).
〈6〉 The integer referenced by DefinedValue cannot be negative.

NameAndNumberForm → identifier “(” NumberForm “)”

〈7〉 The identifier does not influence the encoding, thus it may not nec-
essarily be the one associated with NumberForm when registering the
object. Such a practice, however, is not recommended since it does not
go along with a better readility of the specifications.

Chapter 11

Character string types

Contents

11.1 General comments . 172

11.2 The NumericString type 174

11.3 The PrintableString type 176

11.4 The VisibleString and ISO646String types 176

11.5 The IA5String type . 177

11.6 The TeletexString and T61String types 179

11.7 The VideotexString type 180

11.8 The GraphicString type 181

11.9 The GeneralString type 182

11.10 The UniversalString type 183

11.11 The BMPString type . 189

11.12 The UTF8String type . 190

11.13 Reference Manual . 192

11.14 Character string type compatibility 197

11.15 The ObjectDescriptor type 198

11.16 The GeneralizedTime type 199

11.17 The UTCTime type . 202

172 ASN.1 – Communication between Heterogeneous Systems

But the mere fact that there is an order
no doubt means that, sooner or later and
more or less, each element in the series
becomes the insidious bearer of a qualitative
coefficient [...].

The qualitative alphabetical code is not
very well stocked. In fact, it has hardly more
than three elements:
A = excellent [“class A” cigarettes];
B = less good;
Z = hopeless (a Z-movie).

Georges Perec, Think/Classify, The Alphabet,
translated by John Sturrock, in Species of

Spaces and Other Pieces.

The diversity in character strings offered by ASN.1 provides enough
material for a whole chapter, and even more so since the ASN.1 standard
often calls for other ISO standards to define them.

Once exposed general principles on character strings, we present two
types specific to ASN.1, then six types based on the ISO International
Register of Coded Character Sets with Escape Sequences [ISOReg]1 and
finally three types introduced in 1994 and adapted from the [ISO10646-1]
standard. We conclude with three special types, two of which are used
for handling dates and times in particular.

11.1 General comments

When using character strings, the ASN.1 specifier encounters problems
which are inherently due to character string handling (that is, those pro-
grammers are naturally familiar with, but also difficulties more specifi-
cally related to data transmission).

1All the entries of the [ISOReg] register are available at
http://www.itscj.ipsj.or.jp/ISO-IR/. General information about character strings
(particularly the ASCII, [ISO646], [ISO8859] and [ISO10646-1] alphabets) can be
found at http://www.terena.nl/projects/multiling/ml-mua/mlmua-docs.html.

http://www.itscj.ipsj.or.jp/ISO-IR/
http://www.terena.nl/projects/multiling/ml-mua/mlmua-docs.html

11 - Character string types 173

The definition of a character string (an abstract value) in an ASN.1
module is written in double quotes. If the string itself includes quotes,
these should be doubled:

string IA5String ::=

"string including ""double quotes"""

-- stands for <<string including "double quotes">>

A string may spread over several lines (i.e. contain newline charac-
ters); in this case, spaces and tabulations at the beginning and the end
of a line as well as these newline characters are ignored. In the string
below, the spaces emphasized by the symbol “Ã” (and the newlines) are
not considered as being part of the string:

pi-in-base-26 PrintableString ::= "d,drsqlolyrtrodnlhnÃ

ÃÃÃqtgkudqgtuirxneqbckbszivqqvgdmelmsciekhvdutcxtjpsbÃÃ

ÃÃÃwhufomqjaosygpoupymlifsfiizrodplbjfgsjhn"

This remark applies only on character strings explicitly written in
an ASN.1 module (as abstract values), but do not on those provided by
an application to an encoder.

The characters in strings are to be interpreted accordingly to the
ASN.1 type of the string2. Control or escape characters cannot be in-
serted in a character string abstract value (but they can be encoded all
the same); we shall see that ASN.1 provides, for four different character
string types, a particular syntax for denoting these special characters
(see production CharsDefn on page 196). The management of escape
characters is not ensured by the encoders and the decoders but is left to
the applications.

The diversity of character string types prevents the encoder or de-
coder from checking the conformity of every one of them to their alpha-
bet. To avoid interworking problems, these should be subtyped when-
ever it is possible, using a size constraint with the keyword SIZE (see
Section 13.5 on page 266) and an alphabet constraint with the keyword
FROM (see Section 13.6 on page 268).

Furthermore, for some types (see Table 11.1 on page 175), the en-
coding size of a character is not constant and depends on the character
involved (we say that such types are not known-multiplier character

2But some types include characters with the same glyph (graphical symbol) such as
the capital letters alpha and “A” (i.e. they look the same ‘on paper’). In this case, the
type UniversalString (see Section 11.10 on page 183) can provide unambiguous ref-
erences like latinCapitalLetterA and greekCapitalLetterAlpha to distinguish between
the two characters.

174 ASN.1 – Communication between Heterogeneous Systems

string types). In this case, it is impossible to decode the nth character
without decoding and interpreting the first (n− 1)th.

Although considered as ASN.1 keywords since 1994, the names of
the character string types are not in capital letters because ASN.1 his-
torically defines them using the OCTET STRING type3 in definitions like:

IA5String ::= [UNIVERSAL 22] IMPLICIT OCTET STRING

Since each type has its own tag in the UNIVERSAL class (see Table 11.1
on the next page), it can be provided with its specific encoding rules.

The types that are generally recommended are IA5String and
UTF8String.

Describing precisely and completely which characters make up a
given alphabet can be a very fastidious and hopeless work and this
chapter is not meant to be (and ought not be so for the reader’s sake)
exhaustive.

Contrary to the partitioning adopted in the other chapters of this
second part of the book, the Reference Manual of the various character
string type and value notations is set back to Section 11.13 on page 192.

11.2 The NumericString type

As defined in the [X.409] standard, this type “models data entered from
such devices as telephone handsets”. The corresponding alphabet con-
sists of the space character and the digits from “0” to “9”4.

The NumericString5 type is a known-multiplier character string type
(every character is encoded on the same length). It can be used to model
any kind of identification number (ID, credit card number, etc):

IDnumber ::= NumericString

Note that spaces are valid in a NumericString value.

3These definitions are useless in practice because, as mentioned in Section 10.7 on
page 151, it is not allowed to write an OCTET STRING in double quotes.

4The well-known keys “*” and “#” had been forgotten because the telephones were
buttonless at that time!

5It has the object descriptor (see Section 11.15 on page 198) "NumericString

character abstract syntax" and is registered with the object identifier
{joint-iso-itu-t asn1(1) specification(0) characterStrings(1) numericString(0)}.

11 - Character string types 175

Type name taga Alphabet ESCb mult.c

NumericString 18 “0” to “9”, space
√

PrintableString 19 “A” to “Z”, “a” to “z”, “0” to
“9”, space, “’”, “(”, “)”, “+”,
“,”, “-”, “.”, “/”, “:”, “=”,
“?”

√

VisibleString

ISO646String

26 [ISOReg] entry no. 6; space
√

IA5String 22 [ISOReg] entry no. 1 & 6;
space, delete (see Table 11.2 on
page 178)

√

TeletexString

T61String

20 [ISOReg] entry no. 6, 87, 102,
103, 106, 107, 126, 144, 150,
153, 156, 164, 165, 168; space,
delete (in ASN.1:1990, only the
[ISOReg] entries no. 87, 102,
103, 106 & 107 were allowed)

√

VideotexString 21 [ISOReg] entry no. 1, 13, 72,
73, 87, 89, 102, 108, 126, 128,
129, 144, 150, 153, 164, 165,
168; space, delete

√

GraphicString 25 all the graphical sets (called
‘G’) of [ISOReg]; space

√

GeneralString 27 all the graphical sets (called
‘G’) and all the control char-
acters (called ‘C’) of [ISOReg];
space, delete

√

UniversalString 28 [ISO10646-1]
√

BMPString 30 the basic multilingual plane
[ISO10646-1] (65,536 cells)

√

UTF8String 12 [ISO10646-1]

a
UNIVERSAL class tag number

bEscape characters allowed
cKnown-multiplier character string type (every character of the string is encoded

on the same number of bytes)

Table 11.1: The alphabets of the character string types (from the par-
ticular to the general)

176 ASN.1 – Communication between Heterogeneous Systems

11.3 The PrintableString type

The standard ASN.1:1984 [X.409] used to present it as the type of
“data entered from devices with a limited character repertoire (for exam-
ple, Telex terminals)”. The corresponding alphabet consists of spaces,
upper-case and lower-case letters, digits and the symbols “’”, “(”, “)”,
“+”, “,”, “-”, “.”, “/”, “:”, “=” and “?”. For some spoken languages, it
can be used to model surnames and first names (provided they do not
include accents, among other things), but it is not suitable for an e-mail
address6, for example.

Since 1994, an order relationship has been defined on the
PrintableString alphabet (the characters are listed in increasing or-
der on Table 11.1 on the preceding page). This is meant to limit the
alphabet to a certain interval as we shall see in Chapter 13 on subtype
constraints:

CapitalLettersAndSpaces ::=

PrintableString (FROM ("A".."Z"|" "))

PrintableString7 is a known-multiplier character string type.

11.4 The VisibleString and ISO646String types

These two types are similar (but it is recommended to use the name
VisibleString because the [ISO646] standard is not referenced in the
type definition any more); as a consequence, they have the same tag
no. 26 of class UNIVERSAL. Their alphabet is the international register8

no. 69 [ISOReg], plus the space. As self-explicitly indicated by its label,

6However, [RFC2156] provides a translation mechanism where “@” is represented
by “(a)”, “!” by “(b)”, “ ” by “(u)”, “(” by “(l)”... in order to draw a correspon-
dence between the Internet ASCII encoding and the PrintableString type found in
some items of the X.400 Directory.

7It has the object descriptor "PrintableString character abstract syntax" (see
Section 11.15 on page 198) and is registered with the object identifier {joint-iso-itu-t
asn1(1) specification(0) characterStrings(1) printableString(1)}.

8Every entry of the [ISOReg] register stands for a complete character set, with the
same structure as the ASCII table on page 178, i.e. 128 octets in 8 columns and 16
rows. The control characters are in the first two columns (in yellow) and the DEL
character is always in the last cell at the bottom on the left-hand side. Whatever the
register, the escape character ESC is always in the same place.

9Until 1992, the ASN.1 standard has referenced the ISO 646:1983 standard (which
is actually the international register no. 2). In 1990, the [ISO646] standard was revised
and it now corresponds to the international register no. 6 (the character “$” was the

11 - Character string types 177

strings of type VisibleString include no escape characters, no newlines
nor any combination such as those for obtaining the accents with the
backspace, for example. Finally, these are known-multiplier character
string types.

11.5 The IA5String type

The ‘International Alphabet number 5’ (or IA5) is based on 7-bit char-
acters and was jointly published by ISO and ITU-T (recommendation
T.50) in 1963. It has become the basic character set of most of the com-
municating systems. It is generally equivalent to the ASCII alphabet
(international standard de facto), but national versions, which can take
into account accents or characters specific to some spoken languages
may be proposed by national standardization organizations. As seen
in Table 11.2 on the next page, the alphabet IA5String consists of 128
characters altogether divided into 3 groups:

• a set (called C0) of 32 control characters (positions10 from 0/0 to
1/15 in yellow);

• a set (called G) of 94 graphical (i.e. visible) characters in which
10 of them are kept for national use or are specific to the commu-
nicating application;

• two special characters: space in position 2/0 (32 in decimal) and
delete in position 7/15.

The control character set C0 is an heterogeneous collection of func-
tions among which we find the formats (CR, LF, BS, HT, VT, SP, FF), the
extension functions (SO, SI, ESC) that enable extending the character
set according to the [ISO2022] standard when the default set G is not
sufficient11, the information separators, the communication functions
(ACK...). The set C0 is very often used in computing but new transmis-
sion techniques or protocols made redundant or even incompatible many

only addition!). If it is the former definition of VisibleString and ISO646String that
is meant to be referenced in a specification, the CHARACTER STRING type described in
Section 14.3 on page 306 can be used.

10The positions of the characters are given in the form ‘column/row’ with respect
to the 8 (columns) by 16 (rows) table on page 178.

11It is the case for accentuated letters which are characters made of a combination
of a letter, the backspace character (BS) and the appropriate accent.

178 ASN.1 – Communication between Heterogeneous Systems

0 1 2 3 4 5 6 7

0 NULa DLE SP 0 b P b p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 #/£ c 3 C S c s

4 EOT DC4
�
/$ c 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

10 LF SUB * : J Z j z

11 VT ESCd + ; K b k b

12 FF IS4 , < L b l b

13 CR IS3 - = M b m b

14 SO IS2 . > N b n b

15 SI IS1 / ? O o DEL d

aThe columns in yellow correspond to the control character set C0.
bThis position is free for national or application-specific use.
cOne of these two characters must be chosen in any specific use of this alphabet.
dThe characters ESC and DEL are always found at the same position in all the

character tables extracted from the [ISOReg] register.

Table 11.2: The IA5String alphabet

11 - Character string types 179

of these. A few of codes also became useless because some applications
had used them abusively in the sense that their interpretation relied in
fact on a tacit agreement between the sending and receiving application.

The types NumericString, PrintableString and VisibleString pre-
viously introduced are obviously subtypes of the IA5String type.

Since ASN.1:1994, the character set C0 has been defined in the
standardized module called ASN1-CHARACTER-MODULE12 by values of type
IA5String like:

cr IA5String ::= {0,13}
del IA5String ::= {7,15}

The 2-tuple in curly brackets is an ASN.1 notation specific to the
IA5String type, which allows referencing non-graphical characters by
their positions in the Table 11.2 on the preceding page. This notation
(described in Section 11.13 on page 192) can, of course, be used by the
ASN.1 specifier. If non graphical characters are to be inserted in a char-
acter string of type IA5String, the following notation can be used once
the adequate character references have been imported:

ExampleIA5String DEFINITIONS ::=

BEGIN

IMPORTS cr FROM ASN1-CHARACTER-MODULE {joint-iso-itu-t

asn1(1) specification(0) modules(0) iso10646(0)} ;

two-lines IA5String ::= { "First line", cr,

"Second line" }

END

The value two-lines contains the newline character (CR).

11.6 The TeletexString and T61String types

These two types are similar (even though it is recommended to use the
name TeletexString); as a consequence, they have the same tag no. 20
of class UNIVERSAL. The Teletex was designed as a ‘super-telex’ service
for inter-connecting word-processing machines according to a page-based
transmission mode with an alphabet of 308 characters. It was divided
into five blocks [ISO6937]:

• a control character primary set and an additional set (the columns
0, 1, 8 and 9 of a 15-row table similar to Table 11.2 on the preceding
page);

12http://asn1.elibel.tm.fr/en/standards/ASN1-CHARACTER-MODULE.asn

http://asn1.elibel.tm.fr/en/standards/ASN1-CHARACTER-MODULE.asn

180 ASN.1 – Communication between Heterogeneous Systems

• a graphical character primary set and an additional set (the
columns 10 to 15);

• the space and the delete character.

Using characters encoded on 8 bits (or 16 bits for composed char-
acters), the TeletexString type doubles the possibilities offered by the
IA5String type (even if it does not quite use the same characters); it
makes it possible to use text transmission in different languages more
easily (the column 12 includes diacritical characters that accentuate let-
ters when they prefix graphical characters of the primary set, i.e. the
Roman alphabet). These can frequently be found in specifications based
on the X.400 (electronic mail) and X.500 (directory) standard series.
Despite some undeniable advantages, it is seldom used today.

11.7 The VideotexString type

The Videotex system enables the user to visualize on a television screen
or any equivalent terminal such as the French Minitel (see Figure 11.1 on
the next page), numerical text or graphical information transmitted on
the telephone network. The user employs a return channel to inter-act
with the computer on which the information is stored.

The [T.101] standard on interworking of Videotex services at an in-
ternational level emphasizes that: “a VideotexString within ASN.1 con-
sists of a string of characters selected from the data syntaxes I, II and
III of [Recommendation T.101] or from the annexes defining common
Videotex components (audio, photographic). These are defined in regis-
tration 131, 145 and 108 under [ISO2375]. The common component of
audio and photographic are registered under ISO 9281, Part 2 ”.

The data syntax I is the the data syntax for the Japanese CAP-
TAIN videotext system (‘Character And Pattern Telephone Access In-
formation Network system’). Created in 1978, it is adapted for Kanji
ideograms and the Katakana alphabet but it also includes the IA5 alpha-
bet, mosaics, dynamically re-definable characters (or ‘soft’ characters)
and codes for controls, size, flickering...

The data syntax II is the old data syntax of CEPT (‘Conference of
European Postal and Telecommunications Administrations’). Using five
recommendations published in 1998, it includes the Chinese ideograms,

11 - Character string types 181

c© France Télécom R&D/Michel Le Gal

Figure 11.1: An example of a Videotex terminal: the French Minitelr

many symbols, mosaic graphical characters such as ¯, graphical char-
acters for line drawing (which describes a drawing using a series of in-
structions for an arc, a finite line, a contour or a filled surface) as well
as formatting codes of colour, size or scrolling...

The data syntax III is the data syntax of the American NAPLPS
videotext system (‘North American Presentation Level Protocol Syn-
tax’). Created in 1982, it includes the Latin alphabet, many symbols
and graphical characters.

The characters of this type are encoded on 7 or 8 bits; it is not a
known-multiplier character string type. The VideotexString character
strings may include escape characters.

This type is no longer used.

11.8 The GraphicString type

A character string of type GraphicString can include spaces and any of
the graphical (i.e. visible) character sets (called “G”) registered in the
‘International Register of Coded Character Sets to be used with Escape
Sequences’ [ISOReg]. This international register collects character sets

182 ASN.1 – Communication between Heterogeneous Systems

of common usage established in accordance to the [ISO2022] standard
(‘Character code structure and extension techniques’), and registered13

according to the [ISO2375] standard (‘Procedure for registration of es-
cape sequences’). To switch from one to the other, an escape sequence
has to be used (see the ESC character of the IA5 alphabet in Table 11.2
on page 178).

This escape mechanism and the generality of the character set to
be handled can obviously be a problem to assess the validity of an
encoding and one could say that no ASN.1 tool fully takes into ac-
count the GraphicString type even though it was very much used in the
first specifications of the OSI world. Moreover, the interpretation of a
GraphicString by a receiving application proves more computationally
expensive since the characters are not encoded on a constant number of
bytes.

We shall see in the next section that UniversalString or BMPString

types solve all these problems without restricting the GraphicString

type’s generality. Using GraphicString is therefore not recommended
any more.

11.9 The GeneralString type

The GeneralString type is based on all the character sets of the
GraphicString type described above and includes all the control charac-
ter sets (called “C”) of the [ISOReg] standard.

Like the GraphicString type, GeneralString is too general to be im-
plemented. It was, for example, ill-used in the first version of the Z39.50
protocol (see on page 87):

InternationalString ::= GeneralString

because no agreement could be found on an alphabet. Today, its use is
not recommended.

13Potentially, anyone can define a new set of characters, register it and use an
escape sequence for selecting it.

11 - Character string types 183

11.10 The UniversalString type

11.10.1 User’s Guide

At the end of the 1980s, the subcommittee 2 (SC 2) of JTC 1 (see Fig-
ure 6.2 on page 56), in charge of all the character set standards, initiate a
very ambitious program in order to design a single structure that would
take into account all the alphabets of all the languages on Earth! Some-
times questioned, this work ended in late 1992 by the publication of the
[ISO10646-1]14 standard, also known as Unicode [Uni96]15 (presented in
[Cha97a], for example).

The [ISO10646-1] standard, called ‘Universal multiple-octet coded
Character Set’ (UCS), potentially offers 231 cells (each of which contains
a single character) stratified into 128 groups of 256 planes of 256 rows
of 256 cells (i.e. an encoding of four bytes at most for each cell). At
the moment, only the first plane (38,885 cells), called Basic Multilingual
Plane or BMP, is allocated. Its rows contain the following alphabets:

• the first 127 characters are those of ASCII, i.e. the international
reference version of the IA5 alphabet (see Table 11.2 on page 178);

• the second half of the first row re-use the Latin 1 characters; this
alphabet is a set of 8-bit characters defined as a superset of ASCII
to take into account most of the national European character set
(the accentuated characters, in particular);

• the accentuated characters of Eastern Europe;

• the international phonetic alphabet;

• the Greek alphabet (with the two kinds of accentuated characters);

• the Cyrillic, Georgian and Armenian alphabets;

14The number 10646 was given to recall the ISO 646 standard which is just beneath
the surface of many character sets, and more particularly ASCII and the International
Register [ISOReg].

15Since 1993, the standards [ISO10646-1] and [Uni96] have included exactly the
same character sets and the modifications of these are carried out simultaneously on
both texts. Nevertheless, [Uni96] defines extra properties on characters and additive
specificities from communicating applications that can convey a great interest for
programmers. Besides, [Uni96] does not offer the UCS-4 encoding on four bytes but
only the UCS-2 encoding on two bytes. A short introduction of these two standards
is given at http://www.nada.kth.se/i18n/ucs/unicode-iso10646-oview.html.

http://www.nada.kth.se/i18n/ucs/unicode-iso10646-oview.html

184 ASN.1 – Communication between Heterogeneous Systems

• the Hebrew alphabet;

• the four types of Arab characters;

• the languages used on the Indian sub-continent;

• the Thai and Lao;

• the Chinese, Corean and Japanese ideograms;

• logical and arithmetic operators;

• characters to draw lines and boxes;

• geometrical forms and dingbats;

• characters dedicated to check optical recognition;

• circled characters.

The [ISO10646-1] standard should become the basic encoding of 16-
or 32-bit computers16. It will make it possible to use a software from
one country to another because of the following properties:

• the encoding scheme is uniform for all characters (whether they are
alphabetical characters, symbols or ideograms) and unambiguous;

• the length of encoding is fixed (the UCS-4 canonical form encodes
each character on four bytes, but we shall see in the next section
the less expensive UCS-2 form for the BMPString);

• a string is easily decoded since the escape character and the control
characters are not used17;

• efficient sort and search routines can be applied on the character
strings.

16It has been adopted by Microsoft Windowsr and by Javar of Sun Microsystems
Inc., for example.

17Note, however, that these characters are allowed since they appear in the
[ISO10646-1] standard. We will see in Chapter 18 that ASN.1 encoding standards
restrict their use.

11 - Character string types 185

With every character, the standard [ISO10646-1] associates a nu-
merical value represented as a quadruple 〈group, plane, row, cell〉 and
sometimes (for little less than 6,000 characters) a name18 such as Latin
Capital Letter A or Greek Capital Letter Alpha. It also gives a name to the
84 most commonly used character subsets like Latin119, Latin2, Latin3,
Katakana... An appendix of the [ISO10646-1] standard provides an al-
gorithm to assign an object identifier (see Section 10.8 on page 153) to
every possible combination of these defined subsets.

Finally, the [ISO10646-1] standard describes three implementation
levels:

• level 1: combining characters20 are not allowed; all the characters
are individually visible;

• level 2: only the combining characters of [ISO10646-1, annex B]
are allowed;

• level 3: there is no restriction on the combining characters.

In ASN.1, the [ISO10646-1] standard has been represented by the
UniversalString type since 1994.

ASN.1 allows referencing a particular character by the correspond-
ing quadruple 〈group, plane, row, cell〉 as defined above, using curly
brackets:

latinCapitalLetterA UniversalString ::= {0,0,0,65}
greekCapitalLetterSigma UniversalString ::= {0,0,3,145}

Besides, the ASN.1 standard [ISO8824-1, clause 37] gives an algo-
rithm to derive automatically an ASN.1 value name of UniversalString

type21 for each cell of the [ISO10646-1] standard. All these names are
collected in a standardized module called ASN1-CHARACTER-MODULE22 so

18These can be obtained at ftp://ftp.unicode.org/Public/UNIDATA/
UnicodeData-Latest.txt or http://www.unicode.org.

19The subset Latin1, for example, concerns western Europe area and gathers the fol-
lowing languages: German, English, Danish, Spanish, Faroe Islands’, Finnish, French,
Dutch, Irish, Icelandic, Italian, Norwegian, Portuguese, and Swedish [ISO8859].

20We call ‘combining character’, a character like the backspace (BS, see Table 11.2
on page 178), which can represent an accentuated letter using two other characters
(the letter and the accent).

21In fact, these values belong to the BMPString type, but this is not a problem for
writing abstract values since these two types are equivalent as far as the abstract
syntax is concerned (see Section 11.14 on page 197).

22http://asn1.elibel.tm.fr/en/standards/ASN1-CHARACTER-MODULE.asn

ftp://ftp.unicode.org/Public/UNIDATA/
ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData-Latest.txt
UnicodeData-Latest.txt
ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData-Latest.txt
http://www.unicode.org
http://asn1.elibel.tm.fr/en/standards/ASN1-CHARACTER-MODULE.asn

186 ASN.1 – Communication between Heterogeneous Systems

that the specifier only needs to import the corresponding character ref-
erence from this module:

MyModule DEFINITIONS ::=

BEGIN

IMPORTS latinCapitalLetterA, greekCapitalLetterAlpha

FROM ASN1-CHARACTER-MODULE {joint-iso-itu-t

asn1(1) specification(0) modules(0) iso10646(0)};

my-string UniversalString ::= {

"This is a capital A: ", latinCapitalLetterA,

", and a capital alpha: ", greekCapitalLetterAlpha,

"; try and spot the difference!"}

END

The value my-string introduces a specific syntax (already used on
page 179 for the IA5String type) for mixing (‘concatenating’) within
curly brackets, character strings (in double quotes) and character
references (imported from the module ASN1-CHARACTER-MODULE). This
notation enables the specifier to make a distinction between different
characters represented by the same glyph (like the capital A of the
Latin alphabet and the capital alpha of the Greek alphabet).

Finally, the character subsets that are the most commonly used and
that are mentioned in the [ISO10646-1] standard are also referenced
in the module ASN1-CHARACTER-MODULE, where they are defined as sub-
types of the UniversalString (actually BMPString) type. They can be
invoked in subtype constraints by alphabet restriction or by type in-
clusion for an easy restriction of the UniversalString type it will be
illustrated on page 262. Indeed, the [ISO10646-1] standard (and this is
also mentioned in the ASN.1 standard) deprecates any unrestricted use
of this type and recommends that the subset implemented should be
clearly stated together with its implementation level23. One may limit
the UniversalString type to the level 1 implementation of the Latin1
alphabet as in:

Latin1Level1 ::= UniversalString

(FROM (Latin1 INTERSECTION Level1))

23The characteristics of a standard (i.e. the way an implementation comply with a
standard) are indicated in a protocol implementation conformance statement (PICS,
see footnote 4 on page 379).

11 - Character string types 187

The subtyping also relieves the specifier from the great diversity of
versions of the [ISO10646-1] standard for which numerous amendments
are still under discussion.

To exclude the control characters we write:

C0 ::= UniversalString (FROM ({0,0,0,0}..{0,0,0,31}))

C1 ::= UniversalString (FROM ({0,0,0,128}..{0,0,0,159}))

VanillaUniversalString ::= UniversalString

(FROM (ALL EXCEPT (C0|C1)))

where the character set C0 is presented on page 177.

Not to jeopardize the implementation of a specification and avoid
indicating literally the character subset that is supported, we can con-
strain the UniversalString type with a parameter of the abstract syntax
(see Section 17.3 on page 389); it can dynamically manage the character
subsets available for a specific implementation:

ISO10646String{UniversalString:ImplementationSubset,

UniversalString:ImplementationLevel} ::=

UniversalString (FROM ((ImplementationSubset UNION

BasicLatin) INTERSECTION ImplementationLevel)

!characterSetProblem)

characterSetProblem INTEGER ::= 1

Note the particular use of the characterSetProblem exception to trigger
a specific operation on the receiving application’s side in case it can only
decode part of the set defined by the sending application.

This is an example of specialization of the parameterized type above:

MyLevel2String ::= ISO10646String{

{HebrewExtended UNION Hiragana}, {Level2} }

We shall see in Chapter 14 when we come to presentation context
switching types that the Presentation layer’s negotiation mechanism to
dynamically indicate what character subset is taken into account using
the CHARACTER STRING type. This mechanism makes the abstract syntax
independent from all character string types.

11.10.2 Reference Manual

Since the types UniversalString, BMPString and UTF8String use a par-
ticular value notation, we describe it here for simplicity’s sake. We shall
nevertheless repeat this description in the summary of Section 11.13 on
page 192.

188 ASN.1 – Communication between Heterogeneous Systems

Type notation
〈1〉 The UniversalString type has tag no. 28 of class UNIVERSAL. This
type appeared in ASN.1:1994.
〈2〉 A UniversalString comprises the characters defined in the
[ISO10646-1] standard or in [Uni96]. It is a set of fixed-length charac-
ters: each character of the UniversalString type encoded on 4 bytes
has only one possible interpretation.
〈3〉 The use of the UniversalString type with no subtype contraint is
not recommended because no implementation can fully conform to it.
〈4〉 The BMPString type has tag no. 30 of class UNIVERSAL. This type
appeared in ASN.1:1994.
〈5〉 The BMPString type’s alphabet is a subset of the UniversalString

type’s alphabet. Every character of a BMPString is encoded on 2 octets
according to the code given in the [ISO10646-1] standard.
〈6〉 The UTF8String type has tag no. 12 of class UNIVERSAL. This type
appeared in ASN.1:1997.
〈7〉 The strings of type UTF8String are the same as those of type
UniversalString. The UTF8String type is therefore equivalent to the
UniversalString type from the abstract syntax viewpoint and one
can be indifferently used for the other. However, as the tags of class
UNIVERSAL are different, their encoding differ (see next rule).
〈8〉 Every character of a UTF8String is encoded on a number of bytes as
small as possible in accordance with the [ISO10646-1Amd2] standard
(see Table 11.3 on page 191).

Value notation

RestrictedCharacterStringValue → cstring
| CharacterStringList
| Quadruple
| Tuple

CharacterStringList → “{” CharsDefn “,” · · ·+ “}”
CharsDefn → cstring

| Quadruple
| Tuple
| DefinedValue

〈9〉 All the characters of cstring must belong to the alphabet associated
with the governing type.

11 - Character string types 189

〈10〉 The cstring can be ambiguous if in the type’s alphabet, the same
glyph (graphical symbol) is used to represent several characters. In this
case, it is recommended to import one of the character references de-
fined in the standardized module ASN1-CHARACTER-MODULE (see rule 〈52〉
on page 197) and to use it in the DefinedValue alternative.
〈11〉 DefinedValue must be a character string of type IA5String,
UniversalString, BMPString or UTF8String. This type must be compati-
ble with that of the string being defined (see Section 11.14 on page 197).

Quadruple → “{” Group “,” Plane “,” Row “,” Cell “}”
Group → number
Plane → number
Row → number
Cell → number

〈12〉 Group, Plane, Row and Cell refer to an abstract character in the en-
coding space of the Universal multiple-octet coded Character Set (UCS)
defined in [ISO10646-1] and [Uni96].
〈13〉 The use of Quadruple for defining abstract strings does not influ-
ence the encoding size of the characters.
〈14〉 In Group, number must be smaller than or equal 127.
〈15〉 In Plane, Row and Cell, number must be smaller than or equal 255.
〈16〉 It is impossible to use a reference (DefinedValue) to a value of type
INTEGER instead of the lexeme number.
〈17〉 For the types UniversalString and UTF8String, the canonical order
of the characters (see rule 〈1〉 on page 265) is given by:
2563 ×Group + 2562 × Plane + 256× Row + Cell.
〈18〉 For the BMPString type, the canonical order of the characters (see
rule 〈1〉 on page 265) is given by: 256× Row + Cell.

11.11 The BMPString type

Today, only part of the 65,536 first cells of the [ISO10646-1] standard is
allocated (see previous section) and it is useless to encode each character
on four bytes since the first two bytes are systematically null. Indeed,
all these 65,536 cells belong to the first plane (group 0, plane 0) called
Basic Multilingual Plane (BMP). This encoding on two bytes is called
UCS-2.

190 ASN.1 – Communication between Heterogeneous Systems

In order to offer a more efficient encoding for the characters of this
plan without compelling the specifier to constrain the UniversalString

type, but also to allow the basic encoding rules (BER) to provide this
encoding, the ASN.1 standard has defined since 1994 the type BMPString

that has its own tag (30) of class UNIVERSAL.

The use of this type is now widespread and should be encouraged,
instead of the UniversalString type, to obtain a more compact encoding.
The ASN.1 standard defines it as:

BMPString ::=

[UNIVERSAL 30] IMPLICIT UniversalString (Bmp)

where the set Bmp is defined in the standardized module
ASN1-CHARACTER-MODULE (see rule 〈52〉 on page 197).

In an ASN.1 module, the BMP plane cell positions are denoted by
a quadruple as in the UniversalString type (see Section 11.10.2 on
page 187), even if the first two coordinates equal zero24:

latinCapitalLetterA BMPString ::= {0,0,0,65}
greekCapitalLetterSigma BMPString ::= {0,0,3,145}

11.12 The UTF8String type

The generality of the UniversalString and BMPString types is appealing
indeed but unfortunately their encoding is not compatible with all the
existing implementations and protocols. Suppose an old e-mail system
receives a message of the [ISO10646-1] format: it would be helpful if
the system could decode at least the ASCII alphabet and discard the
characters unknown to it.

This is the reason why [ISO10646-1Amd2] offers a variable format
which encode ASCII characters on one octet (7 bits in fact) accordingly
with the IA5 alphabet of Table 11.2 on page 178 and the others in a
sequence of two to six octets (the high-order bit of the first octet equals
1 in this case), as partially described in Table 11.3 on the next page.

This encoding format is called ‘UCS Transformation Format, 8-bit
form’ (UTF-8) and the corresponding ASN.1 type is UTF8String25. For
the abstract syntax viewpoint, it is equivalent to the UniversalString

type and therefore includes has the same alphabet. The strings of

24The notation Tuple introduced on page 197 applies only on an IA5String.
25It was introduced by means of an amendment on ASN.1:1994 and is now part of

the ASN.1:1997 standard.

11 - Character string types 191

Value 1st octet 2nd octet 3rd octet

000000000xxxxxxx 0xxxxxxx

00000yyyyyxxxxxx 110yyyyy 10xxxxxx

zzzzyyyyyyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

Table 11.3: UTF-8 encoding bit distribution for the Basic Multilingual
Plane [Uni96, Section A.2]

type UTF8String are defined in ASN.1 as character strings of type
UniversalString:

MyModule DEFINITIONS ::=

BEGIN

IMPORTS latinCapitalLetterA, greekCapitalLetterAlpha

FROM ASN1-CHARACTER-MODULE {joint-iso-itu-t

asn1(1) specification(0) modules(0) iso10646(0)};

my-string UTF8String ::= { "This is a capital A: ",

latinCapitalLetterA, ", and a capital alpha: ",

greekCapitalLetterAlpha, "; spot the difference!" }

END

But the UTF8String type has its own tag of class UNIVERSAL in or-
der to be able to use its specific encoding. The UTF-8 encoding may
look like a backward step compared to the [ISO10646-1] standard (and
its UCS-4 encoding) but it offers very interesting features [RFC2279]
[Uni96, Section A.2]:

• the bi-directional conversion between the canonical encoding
UCS-4 and UTF-8 is simpler and faster (a conversion software
written in C language is given in [Uni96, Section A.2]);

• the character boundaries can be very easily detected in a byte
stream (using the first byte);

• the lexicographical order of the UCS-4 encoded strings is pre-
served;

• fast search algorithms like Boyer-Moore’s26 can be applied to
UTF-8 encoded strings;

26http://sunburn.informatik.uni-tuebingen.de/∼buehler/BM/BM.html

http://sunburn.informatik.uni-tuebingen.de/~buehler/BM/BM.html

192 ASN.1 – Communication between Heterogeneous Systems

• the UTF-8 encoding of a character string can be statistically rec-
ognized by a receiver with a very low error rate;

• it is a reasonably compact encoding (in the best case, a 25% gain
can be obtained compared to the UCS-4 encoding; contrarywise,
in the worst case, the UTF-8 encoding is longer).

The UTF-8 encoding format should be supported by all the web
servers and all the browsers using XML27, the forthcoming language of
the web. It is the character string type recommended for specifications
that are aimed at being used internationally.

11.13 Reference Manual

Type notation

CharacterStringType → RestrictedCharacterStringType
| UnrestrictedCharacterStringType

RestrictedCharacterStringType → BMPString

| GeneralString | GraphicString
| IA5String | ISO646String
| NumericString | PrintableString
| TeletexString | T61String
| UniversalString | UTF8String
| VideotexString | VisibleString

Type BMPString

〈1〉 The BMPString type has tag no. 30 of class UNIVERSAL. It first
appeared in ASN.1:1994.
〈2〉 The BMPString character set is a subset of the UniversalString

character set. Every character of a BMPString is encoded on 2 octets
according to the code given in the [ISO10646-1] standard.
〈3〉 The canonical order (see rule 〈1〉 on page 265) of the characters for
the BMPString type is defined in rule 〈47〉 on page 196.

Type GeneralString

〈4〉 The GeneralString type has tag no. 27 of class UNIVERSAL. It groups
all the character strings of type GraphicString, together with the
control characters.

27http://www.w3.org/XML/

http://www.w3.org/XML/

11 - Character string types 193

〈5〉 The use of an unconstrained GeneralString type is not recom-
mended in practice since this is generally impossible to conform to (see
rule 〈9〉 on the current page).

Type GraphicString

〈6〉 The GraphicString type has tag no. 25 of class UNIVERSAL.
〈7〉 The size of GraphicString characters encoding may vary; it can
convey characters of any character set thanks to the escape mechanism,
which describes how the following characters should be interpreted
(Latin, Greek... alphabets), but it contains no control character (see
the GeneralString type). These characters are defined in the document
‘International Register of Coded Character Sets to be used with Escape
Sequences’ [ISOReg]. It is possible to create new character sets, and to
register and use them using a specific escape sequence.
〈8〉 Whenever possible, one of the types UniversalString, BMPString or
UTF8String should be preferred (see rule 〈22〉 on the following page).
〈9〉 The use of unconstrained GraphicString or GeneralString types is
not recommended because, in practice, this is impossible to conform
to. Generally speaking, compilers do not check values of any of these
types. This would imply to take into account the escape mechanism to
determine the number of characters to be analyzed, which may prove
computationally intractable.
〈10〉 The ObjectDescriptor type is a particular use of the GraphicString

type (see rule 〈2〉 on page 199).

Type IA5String

〈11〉 The type IA5String has tag no. 22 of class UNIVERSAL. This type
supports no escape character.
〈12〉 The character canonical order for IA5String is the character defi-
nition order given in the [ISO646] standard (see Table 11.2 on page 178).

Type ISO646String

〈13〉 The type ISO646String is equivalent to VisibleString. It has the
same tag no. 26 of class UNIVERSAL (see rules 〈32〉 and 〈33〉 on page 195).

Type NumericString

〈14〉 The NumericString type has tag no. 18 of class UNIVERSAL.
〈15〉 A NumericString consists of the character space and of those from
“0” to “9”. These characters are classified in their canonical order.

194 ASN.1 – Communication between Heterogeneous Systems

Type PrintableString

〈16〉 The type PrintableString has tag no. 19 of class UNIVERSAL.
〈17〉 A PrintableString consists of the characters space, “’”, “(”, “)”,
“+”, “,”, “-”, “.”, “/”, “0” to “9”, “:”, “=”, “?”, “A” to “Z” and “a” to
“z”. These characters are classified in their canonical order.

Types TeletexString and T61String

〈18〉 The TeletexString type has tag no. 20 of class UNIVERSAL.
〈19〉 The character sets allowed for the TeletexString type are summa-
rized in Table 11.1 on page 175. They include the escape character.
〈20〉 The T61String type is equivalent to TeletexString. It has the
same tag no. 20 of class UNIVERSAL.

Type UniversalString

〈21〉 The UniversalString type has tag no. 28 of class UNIVERSAL. It
appeared in ASN.1:1994.
〈22〉 A UniversalString is made of the characters defined in the stan-
dards [ISO10646-1] or [Uni96]. It includes characters of fixed length:
every character of type UniversalString described on 4 octets has only
one possible interpretation.
〈23〉 The characters canonical order for the type UniversalString is
defined in rule 〈46〉 on page 196.
〈24〉 The use of type UniversalString with no subtype contraint is not
recommended because no implementation can fully conform to it.

Type UTF8String

〈25〉 The type UTF8String has tag no. 12 of class UNIVERSAL. It appeared
in ASN.1:1997.
〈26〉 The strings of type UTF8String are the same as those of type
UniversalString. The UTF8String type is therefore equivalent to
UniversalString from the abstract syntax viewpoint: one can indif-
ferently be used for the other. Still, the tags of class UNIVERSAL are
different so their encoding are different (see next rule).
〈27〉 Every character of a UTF8String is encoded on a number of bytes
as small as possible according to the [ISO10646-1Amd2] standard (see
Table 11.3 on page 191).
〈28〉 The canonical order of characters for UTF8String is defined in
rule 〈46〉 on page 196.

11 - Character string types 195

Type VideotexString

〈29〉 The type VideotexString has tag no. 21 of class UNIVERSAL.
〈30〉 The character sets allowed for the VideotexString type are sum-
marized in Table 11.1 on page 175. They include the escape character.

Type VisibleString

〈31〉 The VisibleString type has tag no. 26 of class UNIVERSAL. It is
equivalent to the ISO646String type.
〈32〉 The VisibleString type includes the same characters as IA5String

except the first 32 characters (LF, CR, HT...) and the delete character.
The escape characters are not allowed (see Table 11.1 on page 175).
〈33〉 The canonical order of characters for VisibleString is the defini-
tion order of these characters in the [ISO646] standard.
〈34〉 The types GeneralizedTime (rule 〈2〉 on page 201) and UTCTime

(rule 〈2〉 on page 202) are a particular use of the VisibleString type.

〈35〉 All the character string types can be constrained by a single value
(production SingleValue on page 261), by type inclusion (production
ContainedSubtype on page 263), by size (production SizeConstraint on
page 267) or by alphabet restriction (production PermittedAlphabet on
page 269).

Value notation

CharacterStringValue → RestrictedCharacterStringValue
| UnrestrictedCharacterStringValue

RestrictedCharacterStringValue → cstring
| CharacterStringList
| Quadruple
| Tuple

〈36〉 All the characters of a cstring must belong to the alphabet asso-
ciated with the governing type (see Table 11.1 on page 175, see also
the rules 〈15〉 and 〈17〉 on the preceding page, 〈2〉 on page 199, 〈2〉 on
page 201 and 〈2〉 on page 202).
〈37〉 The character string cstring can be ambiguous if the same
glyph (graphical symbol) is used to represent several characters. In
this case, when dealing with the types IA5String, UniversalString,
UTF8String and BMPString, the use of the alternative DefinedValue

196 ASN.1 – Communication between Heterogeneous Systems

for importing character references defined in the standardized module
ASN1-CHARACTER-MODULE is recommended (see rule 〈52〉 on the next page).

CharacterStringList → “{” CharsDefn “,” · · ·+ “}”

〈38〉 CharacterStringList can be used only for defining values of type
IA5String, UniversalString, UTF8String or BMPString.

CharsDefn → cstring
| Quadruple
| Tuple
| DefinedValue

〈39〉 DefinedValue must denote a character string of type IA5String,
UniversalString, BMPString or UTF8String. This type should be com-
patible with that of the type which is being defined (see Section 11.14
on the next page).

Quadruple → “{” Group “,” Plane “,” Row “,” Cell “}”
Group → number
Plane → number
Row → number
Cell → number

〈40〉 Quadruple can be used only for denoting character strings (more
precisely ‘one-character strings’) of type UniversalString, BMPString or
UTF8String.
〈41〉 The use of Quadruple for defining abstract strings does not influ-
ence the encoding size of the characters.
〈42〉 Group, Plane, Row and Cell refer to an abstract character in the en-
coding space of the Universal multiple-octet coded Character Set (UCS)
defined in [ISO10646-1] or [Uni96].
〈43〉 In Group, number should be smaller or equal to 127.
〈44〉 In Plane, Row and Cell, number should be smaller or equal to 255.
〈45〉 It is impossible to use a reference (DefinedValue) to a value of type
INTEGER instead of the lexeme number.
〈46〉 For the types UniversalString and UTF8String, the canonical order
of the characters (see rule 〈1〉 on page 265) is given by the formula:
2563 ×Group + 2562 × Plane + 256× Row + Cell.
〈47〉 For the BMPString type, the canonical order of the characters (see
rule 〈1〉 on page 265) is given by the formula: 256× Row + Cell.

11 - Character string types 197

Tuple → “{” TableColumn “,” TableRow “}”
TableColumn → number
TableRow → number

〈48〉 Tuple can be used only for denoting characters of type IA5String

according to Table 1 in the [ISO2022] standard or to Table 11.1 on
page 175.
〈49〉 TableColumn should take a value between 0 and 7.
〈50〉 TableRow should take a value between 0 and 15.
〈51〉 For the moment, it is impossible to use a reference (DefinedValue)
to a value of type INTEGER instead of the lexeme number.
〈52〉 The standardized module ASN1-CHARACTER-MODULE28 (whose object
identifier is {joint-iso-itu-t(2) specification(0) modules(0)

iso10646(0)}) defines value references of type BMPString for each char-
acter and each character set of the [ISO10646-1] standard; it also defines
values of type IA5String for the control characters of the IA5 alphabet
(columns in yellow in Table 11.2 on page 178) [ISO8824-1, clause 37.1].

11.14 Character string type compatibility

Before the semantic model [ISO8824-1Amd2] of June 1999 (see Sec-
tion 9.4 on page 121), the ASN.1 standard defined no compatibility
between character string types: it was impossible to reference a char-
acter string of a given type in another’s definition since the mean-
ing of some characters depended on the character string type29. The
only possible conversion was that which still exists between the types
UniversalString, BMPString and UTF8String.

It is worthwhile noticing that this compatibility applies only on the
abstract syntax level for making the character string definition easier
(indeed, since the ASN.1 abstract values are never encoded, this com-
patibility does not influence the encoding).

The semantic model now gives a correspondence between some char-
acter string alphabets in order to define a compatibility relation (see Sec-
tion 9.4 on page 121). The types involved are IA5String, VisibleString
(or ISO646String), NumericString, PrintableString, UniversalString,

28http://asn1.elibel.tm.fr/en/standards/ASN1-CHARACTER-MODULE.asn
29The programs “C3 System for conversion character sets”

(http://www.nada.kth.se/i18n/c3/) of the TERENA association and François
Pinard’s ‘recode’ (http://www.iro.umontreal.ca/∼pinard/recode/) can carry out
conversions from one type to another.

http://asn1.elibel.tm.fr/en/standards/ASN1-CHARACTER-MODULE.asn
http://www.nada.kth.se/i18n/c3/
http://www.iro.umontreal.ca/~pinard/recode/

198 ASN.1 – Communication between Heterogeneous Systems

BMPString and UTF8String. However, no compatibility is defined between
the types GeneralString, GraphicString, TeletexString (or T61String),
VideotexString and CHARACTER STRING.

Nevertheless, there still exists characters that have the same glyph
so it is recommended to subtype the corresponding type to prevent from
any reading ambiguity as in the example below:

a1 UniversalString(BasicLatin1) ::= "A"

a2 UniversalString(Cyrillic) ::= "A"

11.15 The ObjectDescriptor type

Having discussed in great length the various character string types, we
now present three types called “useful” in the standard! They are ac-
tually derived from the GraphicString and VisibleString types that we
have just defined.

11.15.1 User’s Guide

The type ObjectDescriptor, formally defined by:

ObjectDescriptor ::=

[UNIVERSAL 7] IMPLICIT GraphicString

was introduced simultaneously with the OBJECT IDENTIFIER type (see
Section 10.8 on page 153). The [ISO9834-1] standard recommends that
a character string of this type be associated with every new object to
be registered in the universal registration tree so that the associated
object identifier could be commented. In fact, we have already encoun-
tered in Sections 11.2 and 11.3, the object descriptors for the types
NumericString and PrintableString respectively:

descr-NumericString ObjectDescriptor ::=

"NumericString character abstract syntax"

descr-PrintableString ObjectDescriptor ::=

"PrintableString character abstract syntax"

And this is the object descriptor for the basic encoding rules (BER):

descr-BER ObjectDescriptor ::=

"Basic Encoding of a single ASN.1 type"

The descriptors are assumed universally unique like the object
identifiers, but nothing ensures that because no specific registration
procedures are associated with these descriptors. Besides, as the

11 - Character string types 199

GraphicString type is too general and its size unlimited (by a SIZE

constraint), the ObjectDescriptor type is not properly supported by
compilers. Moreover, the object identifiers, in case they include all their
identifiers (lexical tokens beginning with a lower-case letter), are gen-
erally readable and clear enough. This type is therefore hardly ever
used.

11.15.2 Reference Manual

UsefulType → GeneralizedTime

| UTCTime

| ObjectDescriptor

〈1〉 The type ObjectDescriptor has tag no. 7 of class UNIVERSAL.
〈2〉 A value of type ObjectDescriptor is actually a value of type
GraphicString (see rule 〈7〉 on page 193).
〈3〉 According to the [ISO9834-1] standard about the registration proce-
dures, a value of type ObjectDescriptor must be associated with every
defined object identifier (see Section 10.8 on page 153).

11.16 The GeneralizedTime type

11.16.1 User’s Guide

This type makes it possible to model a date and an hour by means of a
character string conforming to the [ISO8601] standard, which specifies
in particular the representation of dates A.D. as well as the hour format.

This format can remove interpretation ambiguities of a notation such
as “5/12”, which means “5th of December” in France and “12th of May”
in Anglo-Saxon countries. A value of type GeneralizedTime is therefore
made of:

1. the calendar date with four digits for the year, two for the month
and two for an ordinal number standing for the day;

2. the time with an hour, minute or second precision (or even frac-
tions of a second) according to the precision of the communicating
application;

3. the indication of a possible time lag (the default is the local hour):
if it is followed by the letter ‘Z’30, it denotes the universal time

30As the “Zulu” code used all around the world by pilots.

200 ASN.1 – Communication between Heterogeneous Systems

coordinate (UTC)31; otherwise, the hour is followed by a positive
or negative time lag expressed in hours and minutes whether it is
ahead or behind the UTC.

These are a few values that can represent the date ‘28th of May 1998,
14:29:05.1’:

-- local hour:

now GeneralizedTime ::= "19980528142905.1"

now GeneralizedTime ::= "19980528142905,1"

-- UTC hour:

utc-time GeneralizedTime ::= "1998052814Z"

utc-time GeneralizedTime ::= "199805281429Z"

-- ahead of UTC:

ahead-time GeneralizedTime ::= "199805281629+0200"

The GeneralizedTime type is for example used in the Kerberos pro-
tocol (see on page 87) to represent the timestamps:

KerberosTime ::= GeneralizedTime

-- specify a UTC time at a second precision 32

but also in the CMIP protocol [ISO9596-1] (see Section 23.3 on page 482)
to return the deletion time of a managed object:

DeleteResult ::= SEQUENCE {

managedObjectClass ObjectClass OPTIONAL,

managedObjectInstance ObjectInstance OPTIONAL,

currentTime [5] IMPLICIT GeneralizedTime

OPTIONAL }

In fact the GeneralizedTime type is aimed at international applica-
tions for which the local time is not appropriate. In the general case,
the specifier may define a particular type for denoting time in order to
make the interpretation easier for the programmer of the communicating
application.

11.16.2 Reference Manual

UsefulType → GeneralizedTime

| UTCTime

| ObjectDescriptor

31It is also the new name for the Greenwich meridian time, according to the rec-
ommendation of the ‘General Conference on Weights and Measures’ in 1975.

32This comment could appear in a user-defined constraint denoted by the keywords
CONSTRAINED BY (see Section 13.13 on page 294).

11 - Character string types 201

〈1〉 The type GeneralizedTime has tag no. 24 of class UNIVERSAL.
〈2〉 A value of type GeneralizedTime is a character string of type
VisibleString with one of the following lexical restrictions:

a) a string of the form “AAAAMMJJhh[mm[ss[(.|,)ffff]]]”33 standing for
a local time, four digits for the year, two for the month, two for
the day and two for the hour (the value 24 is forbidden), followed
by two digits for the minutes and two for the seconds if required,
then a dot (or a comma), and a number for the fractions of second
(the maximum precision depends on the application) [ISO8601]34;
or

b) a string of a) followed by the letter “Z” (which would denote a
UTC time); or

c) a string of a) followed by a string “(+|-)hh[mm]” (then the UTC time
is the difference between the string of a) and the second string).

〈3〉 ASN.1 provides no syntactical means of constraining the
GeneralizedTime type to make times respect one of the restrictions de-
scribed in the previous rule.
〈4〉 It is recommended not to apply subtype constraints on the
GeneralizedTime type (in particular, the semantic of the SIZE constraint
is not defined).
〈5〉 In the ASN.1:1994/97 standards, the GeneralizedTime type cannot
to specify the leap second (23:59:60), which is sometimes inserted after
the last second (23:59:59) of the last day of June or December in order
to reduce the delay with the international atomic time35. It is therefore
better to avoid using values just before midnight. This lack is going to
be corrected.

33The square brackets indicate that the expression they contain is optional; the
round brackets and the vertical bar gives a choice between two alternatives.

34The precision may also depend on the modifications of the [ISO8601] standard
referenced by ASN.1.

35Information on time description can be found at
http://www.bldrdoc.gov/timefreq/service/nts.htm for example.

http://www.bldrdoc.gov/timefreq/service/nts.htm

202 ASN.1 – Communication between Heterogeneous Systems

11.17 The UTCTime type

11.17.1 User’s Guide

In case the flexibility offered by the various formats of the
GeneralizedTime is not necessary, one may use the UTCTime type whose
(more restricted) format is the following:

1. the calendar date with two digits for the year, two for the month
and two for the day; and

2. the hour, minutes and seconds; and

3. either the capital letter ‘Z’ to indicate that the time is the UTC or
a positive or negative delay with respect to the UTC.

These are some strings conforming to the UTCTime format; they model
the date ‘28th of May, 1998 14:29:05’:

now UTCTime ::= "9805281429Z"

now UTCTime ::= "980528142905Z"

delayed-hour UTCTime ::= "9805281629+0200"

Contrary to the GeneralizedTime type, the UTCTime type use only two
digits for the year and can therefore be very much concerned with the
now famous millennium bug! Quite rightly, the ASN.1 standard gives
no directions as to how this can be solved: indeed, it is just a matter
of interpretation of the two digits of the dates by the applications and
not a problem of transfer for these two digits. Two working groups have
nonetheless suggested an interpretation: these are reproduced in the
rules 〈6〉 and 〈7〉 on the next page. But it might be preferable, when
possible, to operate a migration towards the GeneralizedTime type.

11.17.2 Reference Manual

UsefulType → GeneralizedTime

| UTCTime

| ObjectDescriptor

〈1〉 The UTCTime type has tag no. 23 of class UNIVERSAL.
〈2〉 A value of type UTCTime is a value of type VisibleString with one of
the following lexical restrictions:

11 - Character string types 203

a) a string of the form “AAMMJJhhmm[ss]Z”, which represents the UTC
time with 2 digits for the year, 2 for the month (from 01 to 12),
2 for the day (from 01 to 31), 2 for the hour (from 00 to 23), 2
for the minutes (from 00 to 59), possibly followed by 2 digits for
the seconds (from 00 to 59, see rule 〈5〉); this string ends with the
capital letter “Z”; or

b) the string “AAMMJJhhmm[ss]” of a) (without the letter “Z”) followed
by a string of the form “(+|-)hhmm” (the UTC is then given by the
difference between the string in a) and the second string).

〈3〉 ASN.1 provides no syntactical means of constraining the UTCTime

type to make times respect one of the restrictions described in the pre-
vious rule.
〈4〉 It is recommended not to apply subtype constraints on the UTCTime

type (in particular, the semantic of the SIZE constraint is not defined).
〈5〉 In the ASN.1:1994/97 standards, the UTCTime type cannot to specify
a leap second (23:59:60) which is sometimes inserted after the last sec-
ond (23:59:59) of the last day of June or December in order to reduce
the delay with the international atomic time36. It is therefore better to
avoid using values just before midnight. A way to correct this lack is
being considered.
〈6〉 The ITU-T working group on the X.500 directory and the ITU-T
Q22/11 question (intelligent networks protocols) propose that an appli-
cation should be able to sort the UTCTime dates and interpret them in
the 1950-2049 interval, which would mean, for example, that the value
“0105281429Z” corresponds to the 28th of May 2001.
〈7〉 The ITU-T working group on the X.400 e-mail propose that dates
from 10 years backwards and 40 years ahead should be interpreted with
respect to the 20th century and that the interpretation of the other years
should be left to the programmer’s interpretation (for example, for an
application that is running in 1998, the values from “88” to “99” stand
for the years from 1988 to 1999, the values from “00” to “38” are the
years from 2000 to 2038, and the interpretation of the values from “39”
to “87” depend on the implementation); this proposition of ‘shifting win-
dow’ is well-adapted for the MHS e-mail systems that manage dates in
the past (dates of old messages stored or forwarded) as well as in the
future (expiry date).

36Information on time description can be found at
http://www.bldrdoc.gov/timefreq/service/nts.htm for example.

http://www.bldrdoc.gov/timefreq/service/nts.htm

204 ASN.1 – Communication between Heterogeneous Systems

Chapter 12

Constructed types, tagging,
extensibility rules

Contents

12.1 Tagging . 206

12.2 The constructor SEQUENCE 218

12.3 The constructor SET . 226

12.4 The constructor SEQUENCE OF 230

12.5 The constructor SET OF 233

12.6 The constructor CHOICE 235

12.7 Selecting a CHOICE alternative 239

12.8 The special case of the ANY type 241

12.9 Type extensibility . 244

As she worked, some ideas began to occur
to her about the blocks.

They are all easy to assemble, she thought.
Even though they are all different, they all
fit together. They are also unbreakable. [...]
The best thing about them was that with
Lego she could construct any kind of object.
And then she could separate the blocks and
construct something new.

What more could one ask of a toy?

Jostein Gaarder, Sophie’s World.

206 ASN.1 – Communication between Heterogeneous Systems

Having described almost all ASN.1 basic types (the obsolete ANY type
will be introduced at the end of this chapter and the presentation context
switching types will be discussed in Chapter 14), we now introduce the
‘constructed types’1, used for defining types whose values are structured.

Unfortunately, semantic rules of some constructors depend on the
concept of tagging which have to be introduced in the first place... using
type constructors for this purpose! In their description, we have tried to
avoid, as much as possible, references to subsequent sections to prevent
from using a notion before defining it; these can nonetheless be tolerated
when necessary for understanding ASN.1 concepts and when these cross-
references merely reflect the notions’ interdependence.

We conclude this chapter with the concept of extensibility, which
makes possible the compatibility of successive versions of the same spec-
ification.

12.1 Tagging

When a value is transmitted, all ambiguities must be avoided so that it
could be properly decoded and interpreted by the receiving application.
In particular, the uniqueness of every type of value that may potentially
be transferred should be ensured to allow the receiver to determine ex-
actly the type of data it receives. The syntactical restriction according
to which two type definitions cannot have the same reference (the same
name) is of no help since these abstract references are not encoded.

Historically2, the first encoding rules associated with ASN.1 were the
basic encoding rules (BER). As described in Chapter 18, the BER trans-
fer syntax has the form of a triplet 〈type, length, value〉 or TLV where
type (also called tag) is a code that identifies unambiguously the trans-
mitted data type, length is the number of bytes necessary for encoding
the value and value is the actual ASN.1 value encoding. In ASN.1, this
‘unique identification code’ of every type is called a tag .

1We shall sometimes use this term to stress the fact that a ‘constructed type’
invokes other ASN.1 types that may be basic types, constrained types or even type
constructors themselves (like Lego). Otherwise said, a type constructor without its
own arguments, which are types strictly speaking, does not denote a set of ASN.1
values. Still, from ASN.1 viewpoint, a type constructor is conceptually a type of its
own, and will, therefore, have specific encoding rules.

2The notion of ‘tagging’ already existed in Xerox’s Courier (see on page 60) in-
troduced at the time for making the structured type’s extensibility easier. We shall
see in Section 12.9 on page 244 that the extension marker “...” has had the same
function since 1994 without the specifier’s having to care about tagging.

12 - Constructed types, tagging, extensibility rules 207

We shall see in Chapter 20 that the packed encoding rules (PER)
are not based on the same format and do not use the notion of tag. The
specifier can get round the problem of tagging (whatever the encoding
rules) by inserting the clause AUTOMATIC TAGS in the module header (see
Section 12.1.3 on page 213).

12.1.1 Tags and tagging classes

A tag is associated (very often by default) with every type of an ASN.1
module. It can be seen as a couple 〈tagging class, number〉 where num-
ber is a positive integer. There exists four tagging classes: UNIVERSAL,
context-specific, APPLICATION and PRIVATE. These make it possible to de-
fine the scope (or context) where every tag must be unique. In a given
context, two tags are considered to be different if they are of different
classes or if their respective numbers are different.

Before introducing the problem of tagging in a few examples, it
should be underlined that when the specifier has to tag explicitly a
type, the tagging class and the tag are written in square brackets before
the type:

T ::= [5] INTEGER

Afters ::= CHOICE { cheese [0] IA5String,

dessert [1] IA5String }

ClientNumber ::= [APPLICATION 0] NumericString

The insertion of a tag before a type does not modify the type’s
abstract definition (an untagged type and the same type with a tag are
isomorphic), nor does it change the definition of values of this type.
Indeed, since the abstract values in ASN.1 are never encoded, there is
no reason why these should be concerned with tags3.

The UNIVERSAL class is reserved for the ASN.1 standard designers
who allocate a tag of this class to all new standardized types (the tags
that have been allocated so far are presented in Table 12.1 on page 209).
The specifiers are not allowed to use this class4. The scope uniqueness of

3For the same reason, there would be no point in tagging the type of an abstract
value as in “v [1] INTEGER ::= 5”. A tag should systematically appear on the right-
hand side of the symbol “::=”.

4In a module, we can come across definitions such as:

UTF8String ::= [UNIVERSAL 12] IMPLICIT OCTET STRING

used for getting round restrictions of some ASN.1 tools, but such definitions are
forbidden and must be rejected by all tools.

208 ASN.1 – Communication between Heterogeneous Systems

the UNIVERSAL class is the ASN.1 standard, that is to say more generally:
two types defined in the standard cannot have the same default tag.

But in the following choice:

Afters ::= CHOICE { cheese IA5String,

dessert IA5String }
the tag [UNIVERSAL 22] is affected by default to the two alternatives
and it is therefore impossible to say at the decoding stage whether the
meal was finished with cheese or dessert (but not both!). It is therefore
down to the specifier to locally overwrite the default tagging of the two
alternatives of the CHOICE as follows:

Afters ::= CHOICE { cheese [0] IA5String,

dessert [1] IA5String }

These tags that seem to refer to no tagging class in particular are
actually of context-specific class whose scope is that of the type construc-
tor SEQUENCE, SET or CHOICE that includes them (or more precisely the
component or alternative list in curly brackets). The context-specific
class is the most commonly used and has no keyword to denote it; it is
therefore the default tagging class if no keyword appears in the tagging
square brackets.

The following example shows the context-specific tagging class that
can be used in the scope of a type constructor (it is not recommended
to put the [0] and [1] tags outside the SET type):

Form ::= SET {

name Surname,

first-name First-name,

phone-number [2] NumericString }

Surname ::= [0] VisibleString

First-name ::= [1] VisibleString

The tag numbers of class context-specific can be re-used if the types
are constructed one above the other since the tags are not relevant out-
side the scope of the constructed type:

A-possible-type ::= SET {

integer [0] CHOICE {

a [0] INTEGER,

b [1] INTEGER },

boolean [1] CHOICE {

a [0] BOOLEAN,

b [1] BOOLEAN }}

12 - Constructed types, tagging, extensibility rules 209

[UNIVERSAL 0] reserved for BER (see Chapter 18)
[UNIVERSAL 1] BOOLEAN

[UNIVERSAL 2] INTEGER

[UNIVERSAL 3] BIT STRING

[UNIVERSAL 4] OCTET STRING

[UNIVERSAL 5] NULL

[UNIVERSAL 6] OBJECT IDENTIFIER

[UNIVERSAL 7] ObjectDescriptor

[UNIVERSAL 8] EXTERNAL, INSTANCE OF

[UNIVERSAL 9] REAL

[UNIVERSAL 10] ENUMERATED

[UNIVERSAL 11] EMBEDDED PDV

[UNIVERSAL 12] UTF8String

[UNIVERSAL 13] RELATIVE-OID

[UNIVERSAL 14] reserved for future use
[UNIVERSAL 15] reserved for future use
[UNIVERSAL 16] SEQUENCE, SEQUENCE OF

[UNIVERSAL 17] SET, SET OF

[UNIVERSAL 18] NumericString

[UNIVERSAL 19] PrintableString

[UNIVERSAL 20] TeletexString, T61String
[UNIVERSAL 21] VideotexString

[UNIVERSAL 22] IA5String

[UNIVERSAL 23] UTCTime

[UNIVERSAL 24] GeneralizedTime

[UNIVERSAL 25] GraphicString

[UNIVERSAL 26] VisibleString, ISO646String
[UNIVERSAL 27] GeneralString

[UNIVERSAL 28] UniversalString

[UNIVERSAL 29] CHARACTER STRING

[UNIVERSAL 30] BMPString

[UNIVERSAL 31]... reserved for future use

Table 12.1: Tags of class UNIVERSAL

210 ASN.1 – Communication between Heterogeneous Systems

The rules that check the uniqueness of the context-specific class
tags within the scope of a constructed type differ from SEQUENCE to SET

or CHOICE. They will be described when we come to every one of these
constructed types further on in this chapter.

In principle, the classes UNIVERSAL and context-specific are sufficient
to unambiguously decode the components of a SEQUENCE or SET type or
the alternatives of a CHOICE type. At the time the notion of tagging was
introduced in the ASN.1 standard, the concept of presentation context
was not quite developed and the tags were expected to be used for distin-
guishing between messages similarly encoded but generated by different
applications.

Two other tagging classes were therefore introduced, but since these
were not properly explained in the standard, they were erroneously in-
terpreted that lead the ASN.1 standard designers not to recommend
their use in 1994.

The standard [X.409] indicated that the APPLICATION class would
be used “to define a data type that finds wide, scattered use within a
particular application and that must be distinguishable (by means of its
[abstract syntax]) from all other data types used in the application”.
The bottom line idea was to use this class to tag types that would be ref-
erenced several times in a specification. As the tag of class APPLICATION

was by definition different from all the other tags (whatever their class),
overwriting the tag of these types would not be necessary.

Such may be the case for the order number given in the case study
on page 36:

Order-number ::=

[APPLICATION 0] NumericString (SIZE (12))

thereby ensuring that in the type Order-header defined in the same
chapter, the tag of the number component is different from that of
the date component (even though these two components are of type
NumericString). Besides, this particular tag also allows re-using the
type Order-number in the type Delivery-report.

Unfortunately, the scope within which the APPLICATION class tags
must be unique is not clearly defined in the standard: protocols fre-
quently import type definitions for which the condition on distinct tags
can hardly be checked. The use of this tagging class is therefore not
recommended, all the more since 1994 when the condition on distinct
tags for the APPLICATION class has been abolished.

12 - Constructed types, tagging, extensibility rules 211

For the fourth and last tagging class, the PRIVATE class, the [X.409]
standard recommended to “use a private-use Tagged [type] to define a
data type that finds use within a particular organization or country and
that must be distinguishable (by means of its [abstract syntax]) from all
other data types used by that organization or country”.

The idea was to use this class for tagging the new components of con-
structed types (SEQUENCE, SET or CHOICE) when producing a version of a
protocol standardized at an international level but locally adapted to a
regional area. These components ‘private’ to a company would there-
fore never clash with any new components introduced in the standard
version.

Unless the data transfer could be limited to the company and the
tags of class PRIVATE unique in this scope, a common agreement should
be found to transmit data of a protocol using such types. Besides, it is
recommended for the company not to design these tags on a long term
basis but rather have them standardized so that these PRIVATE class tags
could turn into context-specific class tags.

For example, a company may extend its Transport Layer PDU (using
an extended component):

RejectTPDU ::= SET {

destRef [0] Reference,

yr-tu-nr [1] TPDUnumber,

credit [2] Credit,

extended [PRIVATE 0] BOOLEAN DEFAULT FALSE }

The use of PRIVATE class tags is not recommended since 1994.

12.1.2 Tagging mode

In the previous section, we have described how a specifier could insert
context-specific tags so that the components of a constructed type could
be decoded unambiguously:

Afters ::= CHOICE { cheese [0] IA5String,

dessert [1] IA5String }

Still, we have not dwelt upon what may become of the UNIVERSAL

class tag no. 22 associated by default with the IA5String type. With no
more information from the specifier and particularly in the context of a
BER encoding, the two tags [0] and [UNIVERSAL 22] are encoded if the
alternative cheese is chosen. In this case, the tagging is in explicit mode.

212 ASN.1 – Communication between Heterogeneous Systems

Even if it may seem pointless to transmit two tags5 since the unicity
of the first one (of context-specific class) is sufficient to ensure an un-
ambiguous decoding, the UNIVERSAL class tag proves useful to know the
effective type of the cheese alternative and allows a monitor that would
be unaware of the abstract syntax (i.e. the ASN.1 module) to offer a
more user-friendly access to the data when supervising a telecommu-
nication network (such as giving the words TRUE or FALSE for a value
detected as boolean, rather than the raw content of the bytes in hex-
adecimal notation).

The explicit tagging mode can sometimes make a specification more
easily extensible. In this mode, indeed, the type:

T1 ::= [0] INTEGER

can be replaced by

T2 ::= [0] CHOICE { integer INTEGER,

real REAL }

while the same BER encoding is preserved for the alternative integer

of type T2 as for T1.

If the explicit mode encoding is judged too verbose, or too costly, the
specifier can use the implicit mode inserting (explicitly!) the keyword
IMPLICIT between the tag and the type:

Afters ::= CHOICE { cheese [0] IMPLICIT IA5String,

dessert [1] IMPLICIT IA5String }

Since the tagging mode applies to a tag, the IMPLICIT marker must
appear after a closing square bracket “]”. We shall see that some types
cannot be tagged in implicit mode because it would make decoding non-
deterministic: this is the case for the CHOICE type, the open type (which
has replaced the ANY type since 1994), and a parameter that is a type.

The IMPLICIT marker proceeds as follows: all the following tags,
explicitly mentioned or indirectly reached through a type reference are
ignored until the next occurrence (included) of the UNIVERSAL class tag
(except if the EXPLICIT marker is encountered before). So, for the type T

below:

T ::= [1] IMPLICIT T1

T1 ::= [5] IMPLICIT T2

T2 ::= [APPLICATION 0] IMPLICIT INTEGER

5Remember the tagging mode is relevant if the BER encoding rules (or their
derived forms, CER or DER) are used, but need not be considered with PER.

12 - Constructed types, tagging, extensibility rules 213

only the tag [1] should be encoded. Another way of explaining the con-
cept of implicit tagging is to say that a tag marked IMPLICIT overwrites
the tag that follows it (recursively); hence, for the example above, tag[1]
overwrites tag [5], which in turn overwrites tag [APPLICATION 0] which
finally overwrites the default tag [UNIVERSAL 2] of the INTEGER type.

A type tagged in implicit mode can be decoded only if the receiv-
ing application ‘knows’ the abstract syntax, i.e. the decoder has been
generated from the same ASN.1 module as the encoder was (and such
is the case most of the time).

12.1.3 Global tagging mode

It might seem complicated or pointless to choose the tagging mode ap-
plicable for each and every type, as much as fastidious to insert IMPLICIT
markers. Some may even say (and they would have a point there!) that
such a concept, which comes under the responsibility of the transfer syn-
tax, should never have appeared at the abstract syntax’s level, and so
much less since the last standardized encoding rules, the PER, hardly
use them. Besides, there exists no precedent or equivalent (visible, at
least) in programming languages. In fact, adopting the explicit tag-
ging (the most verbose) as the default mode was definitely not the most
brilliant idea.

For all these reasons, three global tagging modes6 can apply to a
whole module. The first two modes are self-explicitly named EXPLICIT

TAGS and IMPLICIT TAGS. The global tagging mode is denoted in the
module header between the keyword DEFINITIONS and the symbol “::=”:

ModuleName DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- ...

END

With the clause IMPLICIT TAGS, all the components of types SEQUENCE,
SET and CHOICE defined in the module (except the components and alter-
natives that are followed by an EXPLICIT marker, a CHOICE type, an open
type, or a parameter that is a type) are tagged in implicit mode. The
global tagging clause does not affect components of types imported by
the IMPORTS clause, which remain tagged according to the global tagging

6The standard defines these tagging modes as the ‘default’ modes even though
strictly speaking the only default mode is the explicit.

214 ASN.1 – Communication between Heterogeneous Systems

mode of the module where they are defined. The clause EXPLICIT TAGS

is defined adopting the dual approach.

The following specification:

M1 DEFINITIONS EXPLICIT TAGS ::=

BEGIN

T1 ::= CHOICE { cheese [0] IA5String,

dessert [1] IA5String }

END

M2 DEFINITIONS IMPLICIT TAGS ::=

BEGIN

IMPORTS T1 FROM M1;

T2 ::= SET { a [0] T1,

b [1] REAL }

END

is therefore equivalent, once applied the tagging modes and importation,
to:

M1 DEFINITIONS ::=

BEGIN

T1 ::= CHOICE { cheese [0] EXPLICIT IA5String,

dessert [1] EXPLICIT IA5String }

END

M2 DEFINITIONS ::=

BEGIN

T1 ::= CHOICE { cheese [0] EXPLICIT IA5String,

dessert [1] EXPLICIT IA5String }

T2 ::= SET { a [0] EXPLICIT T1,

b [1] IMPLICIT REAL }

END

where it should be noted that the component a of the T2 type is marked
as EXPLICIT because it is of type CHOICE (see rule 〈6〉 on page 216).

All the criticism expressed against tagging mentioned at the begin-
ning of this section, vanished when the AUTOMATIC TAGS global tagging
mode was introduced in 1994. If a module includes the clause AUTOMATIC

TAGS in its header, the components of all its structured types (SEQUENCE,
SET or CHOICE) are automatically tagged by the compiler starting from 0
by one-increment. By default, every component is tagged in the implicit
mode except if it is a CHOICE type, an open type or a parameter that is

12 - Constructed types, tagging, extensibility rules 215

a type. This tagging mechanism is obviously documented in the ASN.1
standard and, as a result, does not depend on the compiler.

Hence, the module:

M DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

T ::= SEQUENCE { a INTEGER,

b CHOICE { i INTEGER,

n NULL },

c REAL }

END

is equivalent, once applied the automatic tagging, to:

M DEFINITIONS ::=

BEGIN

T ::= SEQUENCE {

a [0] IMPLICIT INTEGER,

b [1] EXPLICIT CHOICE { i [0] IMPLICIT INTEGER,

n [1] IMPLICIT NULL },

c [2] IMPLICIT REAL }

END

If a constructed type contains at least a tag inserted by the specifier
(i.e. if it contains square brackets), the automatic tagging mode is
‘switched off’ for this type. If a SEQUENCE or SET type contains a
COMPONENTS OF clause, this very clause is developed before applying
the automatic tagging; but the decision of automatic tagging must be
taken before development (note that the clause COMPONENTS OF may
have brought in types that were explicitly tagged by the specifier).
Compilers should normally check if such conflicts occur.

It is now recommended to use the AUTOMATIC TAGS clause for new
specifications7, a fortiori for abstract syntaxes known to be encoded
with the PER since these rules do not transmit the tags.

An automatically tagged module has a data structure that very much
looks like any other computing languages or formal notation, and has
the advantage of being more readable for a neophyte or anyone who is
not quite familiar with the telecommunication jargon.

7The old modules that still have the IMPLICIT TAGS clause and whose constructed
types were numbered 1 by 1 from 0 should also comply with this new clause.

216 ASN.1 – Communication between Heterogeneous Systems

12.1.4 Reference Manual

Type tagging

TaggedType → Tag Type
| Tag IMPLICIT Type
| Tag EXPLICIT Type

Tag → “[” Class ClassNumber “]”

〈1〉 The PER encoding rules do not use the tagging mode since tags are
never transmitted in this case.
〈2〉 If a type is tagged, directly or indirectly, in the EXPLICIT mode (i.e.
the tag is marked EXPLICIT, or it is not marked but, either the module
contains the clause EXPLICIT TAGS in its header, either it contains no
global-tagging clause), all the tags preceding the keyword EXPLICIT and
those which follow (potentially until the next tag marked, directly or in-
directly, IMPLICIT), including the tag of class UNIVERSAL associated by de-
fault with the type, are encoded in BER, whatever their class (UNIVERSAL,
context-specific, APPLICATION or PRIVATE).
〈3〉 If a type is tagged, directly or indirectly, in the IMPLICIT mode (i.e.
the tag is marked IMPLICIT, or it is not marked but the module contains
the clause IMPLICIT TAGS in its header), only the tags preceding the key-
word IMPLICIT are transmitted in BER (in particular, the default tag,
of class UNIVERSAL, is not encoded except if a tag marked, directly or
indirectly, EXPLICIT is found after the tag marked IMPLICIT).
〈4〉 For a definition such as T ::= [1] IMPLICIT [0] EXPLICIT INTEGER,
both the tags [1] and [UNIVERSAL 2] are transmitted by a BER en-
coder whereas for T ::= [1] EXPLICIT [0] IMPLICIT INTEGER, only the
tags [1] and [0] are transmitted.
〈5〉 The tag is, by default, of mode EXPLICIT if the module’s global tag-
ging mode (production TagDefault on page 217) is EXPLICIT TAGS or if
no global tagging mode is indicated in the module header.
〈6〉 The tag is, by default, of IMPLICIT mode if the module’s global tag-
ging mode is IMPLICIT TAGS or AUTOMATIC TAGS, except if the Type is an
untagged CHOICE, an untagged open type ObjectClassFieldType (which
has replaced the ANY type since 1994, see on page 347) or an untagged
parameter DummyReference that is a type (see rule 〈17〉 on page 386),
for which the tag is always of EXPLICIT mode.

12 - Constructed types, tagging, extensibility rules 217

Class → UNIVERSAL

| APPLICATION

| PRIVATE

| ε
〈7〉 The class UNIVERSAL can only be used in the ASN.1 standard
[ISO8824-1]. Only the ASN.1 standardization group (at ISO and ITU-
T) can define new ClassNumbers in this UNIVERSAL class.
〈8〉 In the abstract syntax describing a complete protocol, a tag of class
APPLICATION must only be assigned to one type. This class must be re-
served for types frequently used in the specification or for the PDUs.
〈9〉 A standard cannot assign a tag of class PRIVATE. The use of PRIVATE

class tags is specific to a company in order to extend a standardized
specification while avoiding clashes with some other company’s specifi-
cation.
〈10〉 The use of the classes APPLICATION and PRIVATE is not recommended
since 1994.
〈11〉 The condition of distinct context-specific tags (alternative ε of the
production Class) is ensured by the rules 〈14〉 on page 224 for the
SEQUENCE type, 〈10〉 on page 228 for the SET type and 〈9〉 on page 238
for the CHOICE type.

ClassNumber → number
| DefinedValue

〈12〉 DefinedValue is a reference to a positive or null value of type
INTEGER.
〈13〉 In the context of a BER encoding, the ClassNumber value should
be smaller than or equal 30 so that the tag could be encoded on one
byte (see Figure 18.2 on page 396).
〈14〉 For the encoding rules that require it, there exists a canonical
order for the tags (and their classes) defined in rule 〈15〉 on page 228.

Module global tagging mode

ModuleDefinition → ModuleIdentifier DEFINITIONS

TagDefault ExtensionDefault “::=”
BEGIN ModuleBody END

TagDefault → EXPLICIT TAGS

| IMPLICIT TAGS

| AUTOMATIC TAGS

| ε

218 ASN.1 – Communication between Heterogeneous Systems

〈15〉 If no clause TagDefault appears in the module header, the global
tagging mode is EXPLICIT TAGS for the whole module.
〈16〉 Since 1994, the standard recommends using the AUTOMATIC TAGS

clause to free the specifier from the distinct tag requirement.
〈17〉 If the AUTOMATIC TAGS clause is present, all the components of the
SEQUENCE and SET types and all the alternatives of the CHOICE types
defined in the module are automatically tagged according to the rules〈6〉
on page 223, 〈6〉 on page 227 and 〈4〉 on page 238 respectively.
〈18〉 In a type definition, a tag is by default of IMPLICIT mode if the
TagDefault clause of the module is IMPLICIT TAGS or AUTOMATIC TAGS,
except if it is followed by an untagged CHOICE type, an untagged open
type ObjectClassFieldType (which has replaced the ANY type since 1994,
see on page 347) or an untagged parameter DummyReference that is a
type (see rule 〈17〉 on page 386), for which tags are always of EXPLICIT

mode.
〈19〉 The presence of a TagDefault clause does not affect imported types
(see rule 〈18〉 on page 115).
〈20〉 Should a protocol require that values of different types are to be
transmitted at any time, every type will have a distinct tag (or else the
PDU is necessarily a CHOICE of these types).

12.2 The constructor SEQUENCE

12.2.1 User’s Guide

The constructed type that is the most commonly used by computing
languages is that which provides an ordered series of elements (or com-
ponents) of different types. In ASN.1, this structure is introduced by the
keyword SEQUENCE and every component is denoted by a word beginning
with a lower-case letter called an identifier :

Description ::= SEQUENCE { surname IA5String,

first-name IA5String,

age INTEGER }

The type Description collects triplets whose first two elements are of
type IA5String while the third one is of type INTEGER. A value of type
Description is given by:

johnny Description ::= { surname "Smith",

first-name "John",

age 40 }

12 - Constructed types, tagging, extensibility rules 219

Identifiers are never encoded since the decoder relies on the tags to
identify every component. Nonetheless, the identifiers are not useless:
these are formal comments that give the specification’s semantics and
help the reader understand each component of the structure. Moreover,
they can describe abstract values unambiguously8 as in the example
johnny above whose surname and first name cannot be confused. The
specifier would be therefore well-advised to choose carefully their names.
These identifiers must obviously be distinct within a SEQUENCE type.

The restrictive order imposed by the SEQUENCE may prove interest-
ing, for example, for an X.400 electronic mail application that would
sequentially handle the e-mail messages (of a possibly important size)
received and should treat the header (envelope) before the message body
(content):

Message ::= SEQUENCE { envelope MessageTransferEnvelope,

content Content }

If we stopped here, the SEQUENCE type would be no more than the
equivalent of struct type to be found in numerous languages. But since
it models transmitted data, the information may be unavailable or, un-
der some conditions, not meant to be transmitted or even irrelevant for
encoding when taking certain values fixed in advance. For these reasons,
ASN.1 provides the markers OPTIONAL and DEFAULT9 that are used as fol-
lows (whatever the complexity of the type they are associated with):

ImprovedDescription ::= SEQUENCE {

surname IA5String,

first-name IA5String OPTIONAL,

age INTEGER DEFAULT 40 }

8These identifiers have been mandatory since 1994. Nothing in the previous stan-
dard versions prevented specifiers from writing:

T ::= SEQUENCE { INTEGER {a(0), b(1)} OPTIONAL,

ENUMERATED {a(0), b(1)} OPTIONAL }
for which the abstract value:

v T ::= { a }
is ambiguous since it is not clear whether it is of type INTEGER or ENUMERATED. Besides,
the distinctive encoding rules (DER), which use the identifiers lexicographical order,
could not generate a correct encoder for such a type (see Table 19.2 on page 421).

9The clause DEFAULT can only appear within a type SEQUENCE or SET (or in informa-
tion object class definitions, see Chapter 15). So it is not allowed to define:

T ::= SEQUENCE { a U }
U ::= INTEGER DEFAULT 100

220 ASN.1 – Communication between Heterogeneous Systems

Concerning the DEFAULT marker, the default value should obviously
conform to its preceding type. From the application viewpoint, not re-
ceiving the component age or receiving the default value 40 is equivalent.
Besides, some decoders do not even send the default value back to the
application when no value was received for this component. The DEFAULT

clause often applies to the ASN.1 basic types, but its use become more
and more common for more complex types10.

The use of the markers OPTIONAL and DEFAULT in a SEQUENCE type
demands a specific rule (’condition on distinct tags’) to make sure the
decoding is not ambiguous. Let us consider the following untagged type:

T ::= SEQUENCE { x INTEGER,

y INTEGER OPTIONAL,

z INTEGER DEFAULT 0,

t INTEGER }

and try to transfer the value {x 1, y 2, t 3}. For a BER encoding (see
Chapter 18), the decoder receives a byte stream that can be informally
represented as:

T

2

L

1

V

1

T

2

L

1

V

2

T

2

L

1

V

3

In this case, it does not ‘know’ which components it should give the value
2 and 3 to, because it cannot determine whether the components y and
z were actually transmitted (the order criterion is not sufficient and the
three tag fields T include the UNIVERSAL class tag 2 for the INTEGER type).

The condition on distinct tags, therefore, imposes that for every
group of successive optional components, the tags should differ from
one another and differ from the mandatory component that follows. The
minimal tagging of the type above leads to the following expression:

T ::= SEQUENCE { x INTEGER, -- [UNIVERSAL 2]

y [0] INTEGER OPTIONAL,

z [1] INTEGER DEFAULT 0,

t INTEGER } -- [UNIVERSAL 2]

10For a DER encoding, we should nevertheless make sure that our compiler can
test whether such complex type values are equal (see Table 19.2 on page 421).

12 - Constructed types, tagging, extensibility rules 221

Finally, ASN.1 allows the components of a SEQUENCE type to be in-
serted within another SEQUENCE type using the clause COMPONENTS OF:

Registration ::= SEQUENCE {

COMPONENTS OF Description,

marital-status ENUMERATED {single, married, divorced,

widowed} }

Hardly ever used in practice, this syntactic operator re-uses the com-
ponents of the stated SEQUENCE type but does not take into account the
possible subtype constraints that may follow it, whatever their level11.
Once developed the clause COMPONENTS OF, the type Registration defined
above is therefore equivalent to:

Registration ::= SEQUENCE {

surname IA5String,

first-name IA5String,

age INTEGER,

marital-status ENUMERATED {single, married, divorced,

widowed} }

The COMPONENTS OF clause is developped before checking the condi-
tion on distinct tags and applying the automatic tagging (but the choice
of automatic-tag mode should be made before development because no
tag of class context-specific appeared in the components, other than
those of the clauses COMPONENTS OF).

It should be noted the difference between the type Registration

above, which models quadruples, and the type below, which only has
two components where the first is also structured (a 3-tuple):

OtherRegistration ::= SEQUENCE {

description Description,

marital-status ENUMERATED {single, married, divorced,

widowed} }

By choosing one of the two forms, the specifier has to decide upon the
meaning to be given to its specification, i.e. how it should be interpreted
on the receiving side (since their encoding is not compatible, the choice
should be made once and for all).

In Section 12.9 on page 244, we shall explain how the SEQUENCE type
can be made extensible and add new components in a new version of

11It means that even if a constraint WITH COMPONENTS (see Section 13.9 on page 277)
imposes that some components should be absent, this constraint will be ignored.

222 ASN.1 – Communication between Heterogeneous Systems

the specification12. In Section 13.9 on page 277, we will present the
subtype constraint WITH COMPONENTS for constraining the components of
a SEQUENCE type or only some of them.

12.2.2 Reference Manual

Type notation

SequenceType → SEQUENCE “{” “}”
| SEQUENCE “{” ExtensionAndException

OptionalExtensionMarker “}”
| SEQUENCE “{” ComponentTypeLists “}”

〈1〉 The productions ExtensionAndException and OptionalExtension-
Marker are defined on page 253.
〈2〉 This type has tag no. 16 of class UNIVERSAL, which is the same as
that of type SEQUENCE OF.
〈3〉 This type can be constrained by a single value (production Single-
Value on page 261), by type inclusion (production ContainedSubtype on
page 263) and by constraints on its components (production InnerType-
Constraints on page 277).

ComponentTypeLists → RootComponentTypeList
| RootComponentTypeList “,” ExtensionAndException

ExtensionsAdditions OptionalExtensionMarker
| RootComponentTypeList “,” ExtensionAndException

ExtensionsAdditions OptionalExtensionMarker “,”
RootComponentTypeList
| ExtensionAndException ExtensionsAdditions

OptionalExtensionMarker “,” RootComponentTypeList

〈4〉 For the third alternative, the RootComponentTypeList consists of
two parts.

RootComponentTypeList → ComponentTypeList
ExtensionAdditions → “,” ExtensionAdditionList

| ε
ExtensionAdditionList → ExtensionAddition “,” · · ·+
ExtensionAddition → ComponentType

| ExtensionAdditionGroup
12One may say that the clause COMPONENTS OF could simulate this extensibility in

ASN.1:1990, but it would not offer so many advantages for making two versions of a
protocol interwork.

12 - Constructed types, tagging, extensibility rules 223

ExtensionAdditionGroup → “[[” ComponentTypeList “]]”

ComponentTypeList → ComponentType “,” · · ·+

〈5〉 The identifiers in all the ComponentTypes must be distinct.
〈6〉 In a module that includes the clause AUTOMATIC TAGS in its header,
the root and the extensions of ComponentTypeLists are automatically
tagged if they contain no type tagged by the specifier.
〈7〉 In a module that includes the clause AUTOMATIC TAGS in its header,
if no type is tagged by the specifier in the root RootComponentTypeList
(possibly made of two parts), none of the types of the ExtensionAddi-
tionList can be tagged by the specifier. This rule prevents the belated
introduction of a tag that would disturb the automatic tagging mode
and would not preserve the upward compatibility.
〈8〉 The decision of automatic tagging of ComponentTypeLists should be
taken before the expansion of the clauses COMPONENTS OF (see rule 〈19〉
on the following page), but the tagging is performed after this expansion
(i.e. the automatic tagging is switched off if tags are actually present
in ComponentTypeLists, but not if tags are present in the components
brought in by a COMPONENTS OF clause). Consequently, if a COMPONENTS

OF clause inserted components that were already tagged by the specifier,
they are also tagged in EXPLICIT or IMPLICIT mode according to their
respective type.
〈9〉 The automatic tagging consists in associating to every component a
tag of class context-specific starting from 0 by one-increment. The ex-
tension root (possibly in two parts) is tagged first before the extensions.
〈10〉 The automatic tagging is always of mode IMPLICIT, except when a
component is an untagged CHOICE, an untagged open type ObjectClass-
FieldType (see rule 〈4〉 on page 347), or an untagged parameter Dum-
myReference that is a type (see rule 〈17〉 on page 386) because these are
always tagged in EXPLICIT mode.
〈11〉 Even if some components of SequenceType are marked ABSENT in a
subtype constraint WITH COMPONENTS (see Section 13.9 on page 277), they
are taken into account by the automatic tagging algorithm.
〈12〉 Every ExtensionAdditionGroup delimits with double square brack-
ets the component(s) added in a particular version of the module.

ComponentType → NamedType
| NamedType OPTIONAL

| NamedType DEFAULT Value
| COMPONENTS OF Type

224 ASN.1 – Communication between Heterogeneous Systems

〈13〉 In the DEFAULT clause, Value must be of the Type indicated in
NamedType or of a type that is compatible with it according to the
semantic model of ASN.1 (see Section 9.4 on page 121).
〈14〉 For every series of successive ComponentTypes marked OPTIONAL or
DEFAULT and appearing in RootComponentTypeList (possibly made of
two parts) as well as in ExtensionAdditionList, the Types must have
tags that are distinct and different from the tag of the next mandatory
ComponentType (i.e. not marked OPTIONAL or DEFAULT) that syntacti-
cally follows (if it exists).
〈15〉 The previous rule does not require the tags of ExtensionAddition-
List to be canonically ordered as it is the case for the SET and CHOICE

types (see rule 〈15〉 on page 228).
〈16〉 If the SequenceType is extensible or if one of its components is an
extensible and untagged CHOICE, the rule 〈16〉 on page 255 describes a
virtual transformation to be applied before checking the condition on
distinct tags. This rule need not be applied when the module contains
the AUTOMATIC TAGS in its header.
〈17〉 When NamedType is an untagged CHOICE type that includes no ex-
tension marker “...”, the tags of all the alternatives of the CHOICE must
be referred to when checking the condition on distinct tags.
〈18〉 In the COMPONENTS OF clause, Type must be a SEQUENCE type.
〈19〉 For every ComponentType that is actually a COMPONENTS OF clause,
it must be considered to have been replaced (recursively in case of
embedded COMPONENTS OF) in situ by the components of the referenced
SEQUENCE type. This replacement should occur before checking all the
other rules (see rules 〈8〉 and 〈17〉 above, in particular).
〈20〉 When the syntactic operator COMPONENTS OF is applied, if Type is a
constrained SEQUENCE type, the subtype constraints that follow it are not
taken into account and the components that are in the curly brackets of
the SEQUENCE type are replicated word for word.
〈21〉 When the syntactic operator COMPONENTS OF is applied, if Type con-
tains an extension marker, only the RootComponentTypeList (possibly
made of two parts) is replicated.
〈22〉 When the syntactic operator COMPONENTS OF is applied, some in-
serted components may be of an implicitly extensible type if this type is
imported from a module that contains the EXTENSIBILITY IMPLIED clause
in its header. Similarly, the EXPLICIT/IMPLICIT tagging mode of every
component’s type is characteristic of the module where they are defined.

12 - Constructed types, tagging, extensibility rules 225

〈23〉 When the COMPONENTS OF clause appears in ExtensionAdditionList,
each inserted component is considered as an ExtensionAddition (but not
as an ExtensionAdditionGroup).

NamedType → identifier Type

〈24〉 If Type is a SelectionType, the rule 〈2〉 on page 240 justifies the
two identifiers which appear in this case.

Value notation

SequenceValue → “{” NamedValue “,” · · ·∗ “}”

〈25〉 There should be only one NamedValue for each NamedType not
marked OPTIONAL nor DEFAULT in the SequenceType, and one or none for
a NamedType marked thus.
〈26〉 The NamedValues should appear in the same order as the Named-
Types in the type definition.
〈27〉 The notation “{}” should be used only if all the ComponentTypes
are marked OPTIONAL or DEFAULT in the type definition (or if the corre-
sponding type is SEQUENCE {}, but this is of no need!).
〈28〉 The rules above also apply in presence of an extension marker “...”
in the corresponding SequenceType.
〈29〉 If some components of an ExtensionAdditionGroup are present, all
the mandatory components (i.e. not marked OPTIONAL, nor DEFAULT)
in all the ExtensionAdditionGroups which syntactically precede them
should be present because ASN.1 only allows extensions one after the
other.
〈30〉 The group of all NamedValues pertaining to the same Extension-
AdditionGroup is optional. But if a group is present then a NamedValue
should be given for every mandatory NamedType of this ExtensionAd-
ditionGroup (see also the preceding rule).

NamedValue → identifier Value

〈31〉 identifier is one of those appearing in the SequenceType.

226 ASN.1 – Communication between Heterogeneous Systems

12.3 The constructor SET

12.3.1 User’s Guide

If the component order of the SEQUENCE type does not matter, the key-
word SET is used for modeling such a non-ordered structure:

Description ::= SET { surname IA5String,

first-name IA5String,

age INTEGER }

In this case, the application can provide the components to the en-
coder in the best order for it13. Moreover, the encoder may also send
these components in a different order as we shall see in Part III on the
encoding rules.

The guide [ETSI114] quotes a textbook case of the SET type for the
‘B-ISDN DSS2 UNI’ protocol of the Integrated Services Digital Network
(ISDN) where it is used for specifying that some information elements of
the message may appear in any order. This would have been difficult, if
not impossible, to express it in any other notation than ASN.1. However,
it is recommended to use the SEQUENCE type whenever possible because
it requires much less processing time for encoding and decoding the data
(see Part III on page 391).

Like the SEQUENCE type, the SET type can use the OPTIONAL and
DEFAULT markers. But the tagging rule is simpler: all the components
(either mandatory or optional) of a SET should have distinct tags. The
clause COMPONENTS OF can insert only components of another SET type.
All the other rules of the SEQUENCE type apply to the SET type as well.

In Section 12.9 on page 244, we shall explain how a SET type can
be made extensible and given new components in a subsequent ver-
sion of the specification. In Section 13.9 on page 277, we will present
the subtype constraint WITH COMPONENTS, which allows constraining every
component of a SET type.

13This concept of unordered data was initially introduced in the [X.409] standard:
e-mail applications may have to handle data of great size that could be sent in any
order.

12 - Constructed types, tagging, extensibility rules 227

12.3.2 Reference Manual

Type notation

SetType → SET “{” “}”
| SET “{” ExtensionAndException OptionalExtensionMarker “}”
| SET “{” ComponentTypeLists “}”

〈1〉 The productions ExtensionAndException and OptionalExtension-
Marker are defined on page 253.
〈2〉 This type has tag no. 17 of class UNIVERSAL, which is the same as
that of type SET OF.
〈3〉 This type can be constrained by a single value (production Single-
Value on page 261), by type inclusion (production ContainedSubtype on
page 263) or by constraints on its components (production InnerType-
Constraints on page 277).

ComponentTypeLists → RootComponentTypeList
| RootComponentTypeList “,” ExtensionAndException

ExtensionsAdditions OptionalExtensionMarker
| RootComponentTypeList “,” ExtensionAndException

ExtensionsAdditions OptionalExtensionMarker “,”
RootComponentTypeList
| ExtensionAndException ExtensionsAdditions

OptionalExtensionMarker “,” RootComponentTypeList

〈4〉 For the third alternative, the RootComponentTypeList is made of
two parts.

RootComponentTypeList → ComponentTypeList
ExtensionAdditions → “,” ExtensionAdditionList

| ε
ExtensionAdditionList → ExtensionAddition “,” · · ·+
ExtensionAddition → ComponentType

| ExtensionAdditionGroup

ExtensionAdditionGroup → “[[” ComponentTypeList “]]”

ComponentTypeList → ComponentType “,” · · ·+

〈5〉 The identifiers in all the ComponentTypes must be distinct.
〈6〉 In a module that includes the clause AUTOMATIC TAGS in its header,
the root and the extensions of ComponentTypeLists are automatically
tagged if they contain no type tagged by the specifier.
〈7〉 In a module that includes the clause AUTOMATIC TAGS in its header,

228 ASN.1 – Communication between Heterogeneous Systems

if no component of the RootComponentTypeList (possibly made of two
parts) is tagged by the specifier, then none of the types of the Exten-
sionAdditionList can be tagged by the specifier. This rule prevents the
belated introduction of a tag that would disturb the automatic tagging
mode and would not preserve the upward compatibility.
〈8〉 The decision of tagging automatically ComponentTypeLists should
be taken before the expansion of the clauses COMPONENTS OF (see rule 〈19〉
on page 224), but the tagging is performed after this expansion (i.e. the
automatic tagging is switched off if tags are actually present in Compo-
nentTypeLists, but not if tags are present in the components brought in
by the COMPONENTS OF clause). Consequently, if the COMPONENTS OF clause
has inserted components that were already tagged by the specifier, they
are also tagged in EXPLICIT or IMPLICIT mode according to their type.
〈9〉 The automatic tagging consists in associating to every component a
tag of class context-specific starting from 0 by one-increment. The ex-
tension root (possibly in two parts) is tagged first before the extensions.
〈10〉 The automatic tagging is always of mode IMPLICIT, except when
the component is an untagged CHOICE, an untagged open type Object-
ClassFieldType (see rule 〈4〉 on page 347), or an untagged parameter
DummyReference that is a type (see rule 〈17〉 on page 386) because
these are always tagged in EXPLICIT mode.
〈11〉 Even if some components of SetType are marked ABSENT in a sub-
type constraint WITH COMPONENTS (see Section 13.9 on page 277), they
are taken into account by the automatic tagging algorithm.
〈12〉 Every ExtensionAdditionGroup delimits with double square brack-
ets the component(s) added in a particular version of the module.

ComponentType → NamedType
| NamedType OPTIONAL

| NamedType DEFAULT Value
| COMPONENTS OF Type

〈13〉 In the DEFAULT clause, Value must be of the Type indicated in
NamedType or of a type that is compatible with it according to the
semantic model of ASN.1 (see Section 9.4 on page 121).
〈14〉 The ComponentTypes must have distinct tags whether they appear
in the root or in the extensions.
〈15〉 In ExtensionAdditionList, the tags of each component must be
canonically ordered as follows:

a) first, the tags of class UNIVERSAL, followed by the tags of class

12 - Constructed types, tagging, extensibility rules 229

APPLICATION, then the tags of context-specific class, and finally the
tags of class PRIVATE;

b) for each class, the numbers must appear in increasing order.
〈16〉 If the SetType is extensible or if one of its components is an exten-
sible and untagged CHOICE, the rule 〈16〉 on page 255 describes a virtual
transformation to be applied for checking the condition on distinct tags.
This rule needs not be applied when the module contains the AUTOMATIC

TAGS in its header.
〈17〉 When the NamedType is an untagged CHOICE type that includes no
extension marker “...”, the tags of all the alternatives of this CHOICE

must be referred to when checking the condition on distinct tags.
〈18〉 In the COMPONENTS OF clause, Type must be of type SET.
〈19〉 For every ComponentType that is actually a COMPONENTS OF clause,
it must be considered to have been replaced (recursively in case of em-
bedded COMPONENTS OF) in situ by the components of the referenced SET

type. This replacement should occur before checking all the other rules
(see rules 〈8〉 and 〈17〉 above in particular).
〈20〉 When the syntactic operator COMPONENTS OF is applied, if Type is
a constrained SET type, the subtype constraints that follow it are not
taken into account and the components that are in the curly brackets of
the SET type are replicated word for word.
〈21〉 When the syntactic operator COMPONENTS OF is applied, if Type con-
tains an extension marker, only the RootComponentTypeList (possibly
made of two parts) is replicated.
〈22〉 When the syntactic operator COMPONENTS OF is applied, some in-
serted components may be of an implicitly extensible type if this type is
imported from a module that contains the EXTENSIBILITY IMPLIED clause
in its header. Similarly, the EXPLICIT/IMPLICIT tagging mode of every
component’s type is characteristic of the module where they are defined.
〈23〉 When the COMPONENTS OF clause appears in ExtensionAdditionList,
each inserted component is considered as an ExtensionAddition (but not
as an ExtensionAdditionGroup).

NamedType → identifier Type

〈24〉 If Type is a SelectionType, the rule 〈2〉 on page 240 justifies the
two identifiers that appear in this case.

Value notation

SetValue → “{” NamedValue “,” · · ·∗ “}”

230 ASN.1 – Communication between Heterogeneous Systems

〈25〉 There must be only one NamedValue for each NamedType not
marked OPTIONAL nor DEFAULT in the SetType, and one or none for a
NamedType marked thus.
〈26〉 The NamedValues need not appear in the same order as the Named-
Types in the type definition.
〈27〉 The “{}” notation must be used only if all the ComponentTypes are
marked OPTIONAL or DEFAULT in the type definition (or if the correspond-
ing type is SET {}, which is devoid of interest).
〈28〉 The rules above also apply in presence of an extension marker “...”
in the corresponding SetType.
〈29〉 If some components of an ExtensionAdditionGroup are present, all
the mandatory components (i.e. not marked OPTIONAL nor DEFAULT) in
all the ExtensionAdditionGroups that syntactically precede them must
be present because ASN.1 only allows extensions to be given one after
the other.
〈30〉 The group of all NamedValues pertaining to the same ExtensionAd-
ditionGroup is optional. But if a group is present, then a NamedValue
must be indicated for each mandatory NamedType of this ExtensionAd-
ditionGroup (see also the preceding rule).

NamedValue → identifier Value

〈31〉 identifier is one of those appearing in the SetType.

12.4 The constructor SEQUENCE OF

12.4.1 User’s Guide

The SEQUENCE OF type is equivalent to the dynamic arrays or lists of
some programming languages: all the elements are of the same type but
the number of the elements is not necessarily known beforehand.

It can, for example, model a directory preserving the entry order:

Directory ::= SEQUENCE OF DirectoryEntry

or the result of a horse race for which the arriving order information
should be present:

PariTierce DEFINITIONS ::=

BEGIN

SteepleChase ::= SEQUENCE OF INTEGER

END

12 - Constructed types, tagging, extensibility rules 231

A winning combination would then be written (in curly brackets for
sure!):

winningCombination SteepleChase ::= {5, 2, 12}
no-one-arrived SteepleChase ::= {}

But in principle, it obviously remains possible to have the same value
several times in a list. In that case, the application designers should
decide on the semantics to give to the fact that a value occurs several
times.

In order to make specification-related comments and documents eas-
ier to write, ASN.1 provides a meta-notation14 beginning with the at-
sign “@”, followed by the module name, the name of the SEQUENCE OF

type, and finally an element number in the value or the “*” symbol for
denoting all the elements. It can be used to add to the type SteepleChase

informal constraints that cannot be specified in ASN.1, such as:

-- @PariTierce.SteepleChase.* must be distinct

-- @PariTierce.SteepleChase.0 = 5 (horse no. 5 always wins!)

It is a proposition for a notation and no specifier is bound to use it;
it has the undeniable advantage of providing more homogeneous formal
comments. If they appear within the ASN.1 module, the name of the
module and the at-sign “@” can be omitted:

-- SteepleChase.* must be distinct

-- SteepleChase.0 = 5 (horse no. 5 always wins!)

In Section 13.5 on page 266, we present the SIZE constraint that
limits the number of elements of a value of type SEQUENCE OF, and in
Section 13.8 on page 275, the WITH COMPONENT constraint that enables
applying a constraint to each element of a list.

Historically the SEQUENCE OF type has the same tag of class UNIVERSAL
as the SEQUENCE type, this has unfortunate consequences on the length
of the BER encoding (see Chapter 18). [Lar96, Chapter 7] quotes the
case of the [X.400] message handling system where this peculiarity en-
abled updating the 1984 version to the 1988 version while ensuring the
encoding compatibility.

14The prefix ‘meta-’ denotes that this notation cannot be used in the formal part
of an ASN.1 module. It should therefore be used within comments, in a specification
documentation, in a book... It should not be confused with the ‘pointed’ relational
constraints that are introduced in Section 15.7 on page 341 that deals with information
object classes.

232 ASN.1 – Communication between Heterogeneous Systems

12.4.2 Reference Manual

Type notation

SequenceOfType → SEQUENCE OF Type

〈1〉 This type has tag no. 16 of class UNIVERSAL, which is the same as
that of type SEQUENCE.
〈2〉 This type can be constrained by a single value (production Single-
Value on page 261), by type inclusion (production ContainedSubtype on
page 263), by size (production SizeConstraint on page 267) and by con-
straint on its elements (production InnerTypeConstraints on page 277).

TypeWithConstraint → SEQUENCE Constraint OF Type
| SEQUENCE SizeConstraint OF Type
| SET Constraint OF Type
| SET SizeConstraint OF Type

〈3〉 Constraint should be a subtype constraint (or a combination of con-
straints) by a single value (of the form “SEQUENCE (v) OF T”, see rule 〈2〉
on page 261), by type inclusion (of the form “SEQUENCE (INCLUDES T1)

OF T”, see rule 〈4〉 on page 263), by size (of the form “SEQUENCE SIZE (n)

OF T”, see below) or a constraint on the elements (of the form “SEQUENCE
(WITH COMPONENT (Constraint)) OF T”, see rule 〈1〉 on page 277). Still,
it is recommended to use only a SIZE constraint in this place for clarity’s
sake, but also because other constraints may not be supported by tools.
〈4〉 Only the size constraint (keyword SIZE) was allowed between the
keyword SEQUENCE and OF in ASN.1:1990.

SizeConstraint → SIZE Constraint

〈5〉 Although the production Constraint (see on page 293) can be
derived in “(SIZE Constraint)” (with round brackets), the production
SizeConstraint (without round brackets) is maintained to ensure the
compatibility with ASN.1:1990.
〈6〉 In SizeConstraint, Constraint must be a subtype constraint valid
for the parent type INTEGER(0..MAX).
〈7〉 The unit of SIZE is the element.

Value notation

SequenceOfValue → “{” Value “,” · · ·∗ “}”

12 - Constructed types, tagging, extensibility rules 233

〈8〉 Every Value must be of the Type appearing in the associated
SEQUENCE OF type or of a type that is compatible with Type according
to the semantic model of ASN.1 (see Section 9.4 on page 121).
〈9〉 The same value can appear several times in the SequenceOfValue
(in this case, all the occurrences are transmitted). In that case, the
application designer should decide on the semantics to be given by the
application if a value occurs more than once in a SequenceOfValue.

12.5 The constructor SET OF

12.5.1 User’s Guide

If the element ordering is not required during the data transfer, the
keyword SET OF can be used. It stands for the mathematical notion of
bag: a non-ordered set including elements of the same type, where some
of them may appear several times.

Having already modeled the pari tiercé using the SEQUENCE OF type,
the SET OF type can now be used for representing the National lottery
for instance:

LotteryDraw ::= SET OF INTEGER

-- LotteryDraw.* must be distinct

-- example: draw LotteryDraw ::= {17, 45, 5, 25, 12, 38}

It is recommended to use the SEQUENCE OF type whenever possible:
indeed, when using canonical encoding rules such as the CER or the
canonical PER (see Part III on page 391), the SET OF type requires
dynamically sorting the encoding of every value before transmitting it.

The contraints SIZE (see Section 13.5 on page 266) and WITH

COMPONENT (see Section 13.8 on page 275) previously defined for the
SEQUENCE OF type also apply to the SET OF type.

12.5.2 Reference Manual

Type notation

SetOfType → SET OF Type

〈1〉 This type has tag no. 17 of class UNIVERSAL, which is the same as
that of type SET.
〈2〉 This type can be constrained by a single value (production Single-
Value on page 261), by type inclusion (production ContainedSubtype on

234 ASN.1 – Communication between Heterogeneous Systems

page 263), by size (production SizeConstraint on page 267) and by con-
straint on its elements (production InnerTypeConstraints on page 277).

TypeWithConstraint → SEQUENCE Constraint OF Type
| SEQUENCE SizeConstraint OF Type
| SET Constraint OF Type
| SET SizeConstraint OF Type

〈3〉 Constraint must be a subtype constraint (or a combination of con-
straints) by a single value (of the form “SET (v) OF T”, see rule 〈2〉 on
page 261), by type inclusion (of the form “SET (INCLUDES T1) OF T”, see
rule 〈4〉 on page 263), by size (of the form “SET SIZE (n) OF T”, see be-
low) or a constraint on the elements (of the form “SET (WITH COMPONENT

(Constraint)) OF T”, see rule 〈1〉 on page 277). Still, it is recommended
to use only a SIZE constraint in this place for clarity’s sake, but also be-
cause other constraints may not be supported by ASN.1 tools.
〈4〉 Only the size constraint (keyword SIZE) was allowed between the
keyword SET and OF in ASN.1:1990.

SizeConstraint → SIZE Constraint

〈5〉 Although the production Constraint (see on page 293) can be
derived in “(SIZE Constraint)” (with round brackets), the production
SizeConstraint (without round brackets) is maintained to ensure the
compatibility with ASN.1:1990.
〈6〉 In SizeConstraint, Constraint must be a subtype constraint valid
for the parent type INTEGER(0..MAX).
〈7〉 The unit of SIZE is the element.

Value notation

SetOfValue → “{” Value “,” · · ·∗ “}”

〈8〉 Every Value must be of the Type that appears in the corresponding
SET OF type or of a type that is compatible with Type according to the
semantic model of ASN.1 (see Section 9.4 on page 121).
〈9〉 The same value can appear several times in the SetOfValue (in this
case, all the occurrences are transmitted). In that case, the application
designer should decide on the semantics to be given by the application
if a value occurs more than once in a SetOfValue.

12 - Constructed types, tagging, extensibility rules 235

12.6 The constructor CHOICE

12.6.1 User’s Guide

The constructor CHOICE gives the choice (also called ‘union’) between
several alternatives:

Afters ::= CHOICE { cheese [0] IA5String,

dessert [1] IA5String }

An alternative is denoted by an identifier, which is a word beginning
with a lower-case letter. This identifier is not encoded and it makes
it possible to build unambiguous abstract values15; for this reason, the
identifiers of a CHOICE type must be distinct. Their names should be
as self-explicit as possible so that the role of each alternative could be
easily understood.

A value of type CHOICE features the identifier of the chosen alternative
followed by the symbol “:”16, and a value complying with the type of
this alternative:

mine Afters ::= dessert:"profiteroles"

We should point out a detail seldom noticed by beginners when spec-
ifying. The CHOICE type models two pieces of information: the chosen
alternative (the identifier) and the value associated with this alternative.
Therefore, in the previous value mine, we first indicate that the meal ends
with a dessert, and also that this dessert will be "profiteroles". There
is no need of defining an enumerated type before the CHOICE type since
the CHOICE type enumerates the alternatives in its ‘first column’:

Alternative ::= ENUMERATED {cheese, dessert}

Afters ::= CHOICE { cheese [0] IA5String,

dessert [1] IA5String }

A BER decoder will rely on the received tag to determine the al-
ternative that has been chosen and decode the value according to this

15These identifiers have been mandatory since 1994.
16This symbol was introduced in 1992 in a technical corrigendum. Without this

corrigendum, a full-ASN.1 parsing would have been impossible (see [Ste93, page 116]
or [Rin95] for some examples of these ambiguous definitions) because some of these
ambiguities could not have been removed even when reaching the end of the module.
This technical corrigendum certainly did not go as far as ensuring an upward com-
patibility, but it still remained quite easy to insert the “:” symbol in values of type
CHOICE to update the obsolete specifications.

236 ASN.1 – Communication between Heterogeneous Systems

alternative. The tags of the CHOICE alternatives must therefore be dis-
tinct. The CHOICE constructor is different from the SEQUENCE and SET

constructor in the sense that it has no (default) UNIVERSAL class tag.
Indeed, the CHOICE type does not exist ‘as is’; it is only a collection of
several types among which one of them is chosen to be encoded with its
associated tag.

A CHOICE type can potentially adopt the tag of any of its alternatives
and we should bear this specificity in mind in case this type is embedded
in a SEQUENCE or SET type, or in another CHOICE type. Thus the type U

that follows is not semantically correct because it includes the tag [0]

twice (alternative a and component x) and the tag [1] twice (alternatives
b and c):

T ::= CHOICE { a [0] INTEGER,

b [1] NULL }

U ::= SET { x [0] REAL,

y T,

z CHOICE { c [1] BIT STRING,

d [2] OCTET STRING }}

If the specifier has not inserted the AUTOMATIC TAGS clause in the
module header, it is recommended to add a tag of class context-specific
before every CHOICE type:

U ::= SET { x [0] REAL,

y [1] T,

z [2] CHOICE { c [1] BIT STRING,

d [2] OCTET STRING }}

We very often come across the CHOICE type in ASN.1 specifications
since it is almost always the (highest level) type of the PDU transmit-
ted by the application: it generally collects ‘questions’ and ‘answers’
that should be exchanged. The following example gives a simplified
version of the PDU of the Remote Operation Service Element (ROSE)
[ISO13712-1]:

ROS ::= CHOICE {

invoke [1] Invoke,

returnResult [2] ReturnResult,

returnError [3] ReturnError,

reject [4] Reject }

For another example, the reader may refer to the (extensible) PDU
defined in the case study on page 39.

12 - Constructed types, tagging, extensibility rules 237

The CHOICE type is also used when some information can be trans-
mitted in several different ways (for example, different character string
types for the same data) as in the [X.520] standard:

CHOICE { teletexString TeletexString,

printableString PrintableString,

universalString UniversalString }
In some cases, however, a parameterization of the type should be pre-
ferred to using a CHOICE type. This possibility is described in Chapter 17.

As we shall see in Section 12.9 on page 244, if it is estimated that
extra types may be added to the specification in the future then, in the
first version of this specification, we should consider using an extensible
CHOICE type with only one alternative.

In Section 13.9 on page 277, we will present the WITH COMPONENTS

subtype constraint, which enables restricting the number of alternatives
of a CHOICE and constraining every one of its alternative type.

12.6.2 Reference Manual

Type notation

ChoiceType → CHOICE “{” AlternativeTypeLists “}”
〈1〉 This type has no tag of class UNIVERSAL. It can have the tag of any
of its alternatives.
〈2〉 This type can be constrained by a single value (production Single-
Value on page 261), by type inclusion (production ContainedSubtype on
page 263) and by constraints on its alternatives (production InnerType-
Constraints on page 277).

AlternativeTypeLists → RootAlternativeTypeList
| RootAlternativeTypeList “,” ExtensionAndException

ExtensionAdditionAlternatives OptionalExtensionMarker

〈3〉 A CHOICE type definition can include two extension makers “...”,
but contrary to the SEQUENCE and SET types (see rules 〈4〉 on page 222
and 〈4〉 on page 227), its extension root is made of a single part. The
second extension marker is only meant to emphasize the insertion point
where new extensions can be added.

RootAlternativeTypeList → AlternativeTypeList
ExtensionAdditionAlternatives →

“,” ExtensionAdditionAlternativesList
| ε

238 ASN.1 – Communication between Heterogeneous Systems

ExtensionAdditionAlternativesList →
ExtensionAdditionAlternative
| ExtensionAdditionAlternativesList “,”

ExtensionAdditionAlternative

ExtensionAdditionAlternative →
ExtensionAdditionGroupAlternatives
| NamedType

ExtensionAdditionGroupAlternatives →
“[[” AlternativeTypeList “]]”

AlternativeTypeList → NamedType “,” · · ·+

〈4〉 In a module that includes the AUTOMATIC TAGS clause in its header,
the root and the extensions of the AlternativeTypeLists are automati-
cally tagged if no root alternative has been tagged by the specifier.
〈5〉 In a module that includes the AUTOMATIC TAGS clause in its header, if
no type of the RootAlternativeTypeList is tagged by the specifier, none
of the types of the ExtensionAdditionAlternativesList can be tagged by
the specifier. This rule prevents the belated introduction of a tag that
would disturb the automatic tagging mode and would not preserve the
upward compatibility.
〈6〉 The automatic tagging consists in associating to every alternative
a tag of context-specific class starting from 0 by one-increment. The
extension root is tagged first before the extensions.
〈7〉 The automatic tagging is always of mode IMPLICIT, except when an
alternative is an untagged CHOICE type, an untagged open type Object-
ClassFieldType (which replaces the ANY type since 1994, see rule 〈4〉 on
page 347) or an untagged parameter DummyReference that is a type
(see rule 〈17〉 on page 386) because these are always tagged in EXPLICIT

mode.
〈8〉 Even if some alternatives of ChoiceType are marked ABSENT in a sub-
type constraint WITH COMPONENTS (see Section 13.9 on page 277), they
are taken into account by the automatic tagging algorithm.
〈9〉 The tags of all the alternatives must be distinct. The list consists
of the tags of all the alternatives of the ChoiceType, except when the
alternative is a ChoiceType itself, not preceded by a tag and with no
extension marker (see rule 〈1〉 on the preceding page), in which case
the list of tags of the inner ChoiceType is appended to the former list,
and so on. If one of the alternatives is an extensible CHOICE type, the
rule 〈16〉 on page 255 describes a virtual transformation to be applied
before checking the condition on distinct tags (this rule needs not be
applied if the module contains the AUTOMATIC TAGS clause in its header).

12 - Constructed types, tagging, extensibility rules 239

〈10〉 In the ExtensionAdditionAlternativesList, the tags must be canon-
ically ordered according to the rule 〈15〉 on page 228.

NamedType → identifier Type

〈11〉 The identifiers in all the NamedTypes must be distinct.
〈12〉 If Type is a SelectionType, rule 〈2〉 on the next page justifies the
two identifiers that appear in this case.
〈13〉 Every ExtensionAdditionGroupAlternatives delimits with double
square brackets the alternative(s) added in a particular version of the
module. The presence (or absence) of these double square brackets does
not affect the encoding.

Value notation

ChoiceValue → identifier “:” Value

〈14〉 The symbol “:” was introduced by a technical corrigendum in 1993.
This document is retroactive to all existing specifications. Without this
symbol, an ASN.1 module could not be parsed properly.
〈15〉 Value must be of the type associated with the identifier in the cor-
responding ChoiceType or of a type that is compatible with this type
according to the semantic model of ASN.1 (see Section 9.4 on page 121).
〈16〉 The presence of an extension marker “...” in the corresponding
ChoiceType does not affect the previous rule.

12.7 Selecting a CHOICE alternative

12.7.1 User’s Guide

Sometimes one wants to re-use the type of a CHOICE alternative while
allowing for an easier specification updating (a single modification of the
selected type implicitly spreads the changes over the whole specification),
and keeping the semantic link to the CHOICE type (thereby bestowing
the adequate meaning to the CHOICE type for reading purpose). The
chosen type can be selected by the left angle bracket “<” preceded by
the alternative to be extracted and followed by a reference to the CHOICE

type as in:

Element ::= CHOICE { atomic-no INTEGER (1..103),

symbol PrintableString }

MendeleievTable ::=

SEQUENCE SIZE (103) OF symbol < Element

einsteinium symbol < Element ::= "Es"

240 ASN.1 – Communication between Heterogeneous Systems

The symbol “<” is called ‘selection’ in the ASN.1 standard. It is
a syntactic operator (like COMPONENTS OF) that copies the type which
appears in the corresponding alternative of the CHOICE type (leaving
aside any subtype constraint applied to the CHOICE type). It is hardly
ever used in practice.

12.7.2 Reference Manual

Type notation

SelectionType → identifier “<” Type

〈1〉 Type must be a reference to a CHOICE type.
〈2〉 identifier must be an alternative of the referenced CHOICE type. If
SelectionType is the type (NamedType) of a component of a SEQUENCE or
SET or the type of an alternative of a CHOICE, the identifier of NamedType
is used to name the component and the identifier of SelectionType is
used for selecting the alternative. If SelectionType is used elsewhere,
(for example, directly behind the “::=” symbol), its identifier is only
meant to select the alternative.
〈3〉 The operator “<” is syntactic: it consists in copying literally the
type of the selected alternative of the CHOICE discarding any subtype
constraint WITH COMPONENTS applied to this CHOICE type, i.e. all the
alternatives that are syntactically in curly brackets after the keyword
CHOICE are taken into account.
〈4〉 If a SelectionType is literally followed by a subtype constraint
(i.e. “identifier < Type(ConstraintSpec)”), it is the CHOICE type that
is constrained, which implies that this constraint is meaningless for
the selection (see previous rule). If a reference to a SelectionType is
literally followed by a subtype constraint, it is the selected type that is
constrained, and not the CHOICE type.

Value notation
〈5〉 A value for SelectionType conforms to the production Value on
page 109, and must be of the type of the alternative selected in the
CHOICE type or of a type that is compatible with this type according to
the semantic model of ASN.1 (see Section 9.4 on page 121).

12 - Constructed types, tagging, extensibility rules 241

12.8 The special case of the ANY type

This type has disappeared from the standard since 1994 and its use is
now strongly inadvisable. We shall see at the end of this section how
ANY types have been replaced since then.

12.8.1 User’s Guide

The reason why we choose to introduce the ‘any type’ after the CHOICE

type is for defining it conceptually as a CHOICE (with an infinite number
of alternatives) generalized to all the types that can be defined with
ASN.1. But rather than referencing an alternative by its identifier (a
word beginning with a lower-case letter), we use the type of the alterna-
tive to indicate which is retained (a word beginning with an upper-case
letter). But for this detail, a value of type ANY is denoted as a value of
type CHOICE17:

v ANY ::= INTEGER:12

T ::= SEQUENCE { a BOOLEAN,

b REAL }

w ANY ::= T:{ a TRUE,

b {314, 10, -2} }

As the CHOICE type, the ANY type has no (default) tag of class
UNIVERSAL: in case of BER encoding, the tag depends on the type of
the value to be transmitted.

The [X.409] standard recommended to “use an Any to model a vari-
able whose type is unspecified, or specified in another Recommendation”.
As a consequence, the ANY type enabled the specifier to leave a gap in a
specification when the exact type of some data was not known yet. It
was originally meant to be used during the specification design phase
provided that the sender and the receiver had agreed on a few types
they could exchange. It would have been replaced later by a ‘properly’
defined type in a future version of the specification.

It was the case for the first edition of the Association Control Service
Element standard (ACSE, [ISO8650-1]) for lack of agreement on the
application entity format. In ACSE, the AE-title type had been first

17In 1993 the same technical corrigendum introduced the symbol “:” in CHOICE

values (see on page 235) and in ANY values. It also forbade the keyword SEQUENCE

(SET respectively) not followed by curly brackets, which was a shorthand notation for
SEQUENCE OF ANY (SET OF ANY respectively).

242 ASN.1 – Communication between Heterogeneous Systems

specified as an ANY type and then replaced by an object identifier [Lar96,
Chapter 9].

The unrestricted use of the ANY type was strongly deprecated. Be-
sides, ANY was very often the component type of a SEQUENCE or a SET

conditioned by the value of some other component of the same SEQUENCE

or SET. This happens when the parameter type of a ‘parameterized’ error
message depends on the error code. The clause DEFINED BY can indicate
this semantic link between two components of the same SEQUENCE (or
SET) type:

Error ::= SEQUENCE { code INTEGER,

parameter ANY DEFINED BY code }

The component referenced after the DEFINED BY clause could be of
type INTEGER, OBJECT IDENTIFIER or CHOICE between these two types18.
Unfortunately ASN.1 provided no way of formally indicating what the
possible values of this semantic link could be. This lack of formalization
prevented it from being treated automatically by compilers so that appli-
cation designers sometimes had to write ‘manually’ part of the software
dealing with these references to implement the whole specification.

In fact, the standard recommended defining an association list by
means of comments within the module. For the type Error above, one
could have written:

-- code | parameter type

-- ======|=====================

-- 0 | NULL

-- 1 | INTEGER

-- 2 | SEQUENCE OF INTEGER

-- 3 | SEQUENCE { param1 T1, param2 T2 }

In some specifications, the association table would have been mod-
eled thanks to appropriate macro instances. Unfortunately ASN.1
macros were as badly supported as the DEFINED BY clause, as we shall
see in Chapter 16. In the Remote Operation Service Element standard
(ROSE, [ISO9072-2]), we find the following comment where it is ex-
plained that the pairs 〈operation-value, argument〉 correspond to the

18We have already mentioned in the history on page 63 that this was the only
difference between the CCITT X.208:1988 recommendation and the ISO 8824:1990
standard.

12 - Constructed types, tagging, extensibility rules 243

registration modeled by the OPERATION macro instances (see Section 16.5
on page 371):

ROIVapdu ::= SEQUENCE {

invokeID InvokeIDType,

linkedID [0] IMPLICIT InvokeIDType OPTIONAL,

operation-value OPERATION,

argument ANY DEFINED BY operation-value OPTIONAL

-- ANY is filled by the single ASN.1 data

-- type following the keyword ARGUMENT in the type

-- definition of a particular operation -- }

If the component referenced after the clause DEFINED BY were of type
OBJECT IDENTIFIER then the table was dynamically extensible since the
types needed only to be registered in the universal registration tree (see
Section 10.8 on page 153).

For the X.500 directory service, a database can be queried using test
values and a comparison operator for some attributes. Every attribute
has an object identifier in the registration tree so that the value type is
conditioned by this object identifier19:

AttributeValueAssertion ::=

SEQUENCE { attribute OBJECT IDENTIFIER,

is Operator,

value [0] ANY DEFINED BY attribute }

Operator ::= ENUMERATED { equalTo(0), greaterThan(1),

greaterOrEqualTo(2), lessThan(3), lessOrEqualTo(4),

notEqualTo(5) }

In the [X.509] standard, the nature of the parameters of the authen-
tication procedure depends on the algorithm:

AlgorithmIdentifier ::= SEQUENCE {

algorithm OBJECT IDENTIFIER,

parameters ANY DEFINED BY algorithm OPTIONAL }

But the ANY type and its DEFINED BY clause had serious drawbacks:
the association table could not be formalized (and the notation of macro
instances was of no help for the application designer); the component ref-
erenced in the DEFINED BY clause had to belong to the same SEQUENCE or

19The version given here is adapted from the types AttributeAssertion and
AttributeValueAssertion of the [X.501] standard that we shall discuss further in Chap-
ter 15 when describing how the link DEFINED BY can be defined formally using the
information object classes.

244 ASN.1 – Communication between Heterogeneous Systems

SET; some ambiguous subtyping of ANY types had been detected [Ste93].
All these problems were solved in 1994 by the introduction of the con-
cepts of information object class (and particularly the TYPE-IDENTIFIER

class, see Section 15.9 on page 355), open type and tabular constraint
(see Chapter 15), together with parameterization (see Chapter 17).

12.8.2 Reference Manual

The type ANY and its value notation are described in [ISO8824-1, an-
nex F]. We do not present them here since their use is strongly unrec-
ommended and is not standardized any more since 1994.

12.9 Type extensibility

12.9.1 User’s Guide

We have already breached the problem of extensibility in the case of the
ENUMERATED type in Section 10.4 on page 135. We now go into more detail
on its principle and present its main advantages before describing how
the constructed types SEQUENCE, SET or CHOICE can be made extensible.
We shall come back on this subject in Section 13.12 on page 291 to apply
the concept of extensibility to subtype constraints.

Long before the notion of extensibility was explicitly introduced in
the ASN.1:1994 standard, many protocol specifications included a sec-
tion called “extensibility rules” to describe the behavior that a compiler
was to adopt when receiving values outside the set of values of a type.

Indeed, the basic encoding rules (see Chapter 18) had been conceived
right from the start to implicitly take into account this notion using tags:
a BER decoder ignores any tag that does not correspond to what is ex-
pected [ISO8823-1, clause 8.5.1.a]. Thus, in the Common Management
Information Protocol (CMIP, [ISO9596-1]), we could read:

7.5.1.1 When processing incoming CMIP-A-ASSOCIATE-
Information, the accepting CMIPM shall:

– ignore all tagged values that are not defined in the ab-
stract syntax of this Recommendation, and

– ignore all unknown bit name assignments within a BIT

STRING.

12 - Constructed types, tagging, extensibility rules 245

7.5.1.2 The abstract syntax name may be used when the presentation
data values are modified to include:

– new system management operations,

– new tagged elements within a SET or SEQUENCE,

– new bit name assignments within a BIT STRING,

– new named numbers for an INTEGER, and

– new named enumerations within an ENUMERATED.

In so open a world as OSI is meant to be, it seems difficult to impose
that applications should communicate with (exactly) the same version
of abstract syntax. As the environment of an application is inclined
to regularly changes, a protocol is very often used simultaneously in
different versions. An application designer is therefore free to adopt the
new version of a protocol whenever it is judged fit.

But the only way of ensuring interworking (i.e. demanding that a
decoder, for example, that uses an old version of the protocol could
discard data specific to a new version), is to adapt the encoding rules to
provide the appropriate manifold for these extensions so that the decoder
could detect them without knowing how to interpret them for all that.
The dual problem should also be tackled: a decoder generated from a
new version of the abstract syntax, receiving data that conform to an
old version should recover from not receiving the expected extensions
(see Figure 12.1 on page 247).

As a result, the encoders and decoders generated from the very first
version of the abstract syntax should include the appropriate support20

for the extension management since a version 1 encoder can send data to
a version 2 decoder while indicating that the data are not extended, or a
version 1 decoder can receive data from a version 2 encoder and should
be able to ignore extensions. The capacity of dealing with extensible
types is clearly one of ASN.1 strong points compared to other abstract
syntax notations like those introduced in Chapter 24.

This analysis induces us to require the specifier to indicate, from the
very first version of a protocol, the data types that could be extended
in the future. Note that the point is to keep the type structure since,
otherwise the specifications would not be upward compatible (replacing
a type with another generally change the transfer syntax).

20This support appearing in the abstract syntax makes no assumption as for the
encoding rules that are going to be used.

246 ASN.1 – Communication between Heterogeneous Systems

To indicate that a type is extensible, we insert an extension marker
“...” in its definition. In ASN.1, the only extensible types are
ENUMERATED, SEQUENCE, SET and CHOICE:

State ::= ENUMERATED {on, off, out-of-order, ...}

Description ::= SEQUENCE { surname IA5String,

first-name IA5String,

age INTEGER,

... }

Dimensions ::= SET { x INTEGER,

y INTEGER,

... }

Afters ::= CHOICE { cheese IA5String,

dessert IA5String,

... }

The INTEGER and BIT STRING types, whose syntax is very much similar
to the ENUMERATED type’s are implicitly extensible since their naming list
is not restrictive: provided these types are not constrained (but subtype
constraints can be extensible as well), one may use any unnamed integer
(see on page 132) and any unnamed-bit position (see on page 146).

In a new version of the specification, the specifier can then include
new components after the “...” marker. The types (and the module in
which they are defined) keep the same name:

State ::= ENUMERATED {on, off, out-of-order, ...,

stand-by} -- version 2

Dimensions ::= SET { x INTEGER,

y INTEGER,

...,

z INTEGER } -- version 2

Afters ::= CHOICE { cheese IA5String,

dessert IA5String,

...,

coffee NULL } -- version 2

Afters ::= CHOICE { cheese IA5String,

dessert IA5String,

...,

coffee NULL, -- version 2

cognac IA5String } -- version 3

In this last definition, note that once the type includes an extension
marker, it is indefinitely extensible and that it is useless to insert a new
“...” marker after each new extension.

12 - Constructed types, tagging, extensibility rules 247

System A
Module M (v1)

System B
Module M (v2)

System C
Module M (v1)

System D
Module M (v2)

(3)

(4)

(1) (2)

If sends data then
System to System

(1) A C everything goes well because both A and C have
C A the same version (v1) of the ASN.1 specification

(2) B D everything goes well because both B and D have
D B the same version (v2) of the ASN.1 specification

(3) A B B does not receive all the data expected
but should be able to recover

(4) B A A receives too much data
but should be able to ignore them

Figure 12.1: Interworking using extensibility

The process of decoding is detailed in Figure 12.1 for the various
cases of specification versions. When decoding an extensible type value,
we should detect that:

• the expected extensions are absent or

• unexpected extensions are present21,

using the extensions that can be new components of a SEQUENCE or SET

type, new alternatives of a CHOICE type, new states for an ENUMERATED

type, and even new values or new lengths in the case of extensible con-
straints (see Section 13.12 on page 291).

In such cases, the decoder should not stop to generate a protocol
error but should switch to a dedicated action specified by the application
designer: in general, this consists in ignoring the unexpected extensions
or affect a default value to the expected extensions; it may also inform
the application using a signal as agreed beforehand.

This particular signal for trouble report is called exception. It is
specified in the abstract syntax by an exception marker “!”; it informs

21The updating of a type from one version to the next one is obviously carried out
by inserting the extensions at the end of the type definition (or just before the second
marker if present) and not by inserting them between the extensions of the previous
version.

248 ASN.1 – Communication between Heterogeneous Systems

the application of the problems encountered and specifies the reason for
them. Of course, it does not fall within the competence of ASN.1 to
specify what the application should do when informed of this exception;
this action, which can be of various nature (ignore the unnecessary or
missing elements, re-send the message ‘as is’ for a relay application, dis-
play a message on the user interface, replace the missing elements by
default values...), depends on the protocol strategy (which can be spec-
ified in SDL, for example, see Section 23.1 on page 476). Note that the
ASN.1 specifier needs not insert an exception marker in a specification
if no action is associated with it by the protocol designer.

An exception appears immediately after the extension marker “...”
or in some subtype constraints (see rule 〈3〉 on page 293). It should be
inserted in the first version of the ASN.1 specification. It is by default an
integer value (and, in this case, the exception list and the meaning of the
exceptions should be provided with the ASN.1 specification), otherwise
its type should be declared as an open type (see on page 343), i.e. the
type should be indicated before the exception value and separated with
the “:” symbol:

Description ::= SEQUENCE {

surname IA5String,

first-name IA5String,

age INTEGER,

...!extended-description }

extended-description INTEGER ::= 1

Dimensions ::= SET { x INTEGER,

y INTEGER,

... !IA5String:"dimension error"}

Afters ::= CHOICE { cheese IA5String,

dessert IA5String,

...!ExtensionPb:greedy,

coffee NULL,

cognac IA5String }

ExtensionPb::= ENUMERATED {greedy, ...}

Other examples can be found in the ROSE ASN.1 specification
[ISO13712-1] where all the exceptions have a self-explicit name (such
as unrecognizedOperation, for example), which is an identifier taken in
a named integer list after an INTEGER type.

12 - Constructed types, tagging, extensibility rules 249

The exception marker is particularly recommended if the abstract
notation is used by a relay application in charge of handing over the
information: this application should be indicated to re-emit22 the octet
stream corresponding to the extensions (connections (1) and (2) on Fig-
ure 12.2 on the following page) even if it is based on some older version
of the specification (i.e. even if it cannot decode them to re-encode them
afterwards).

In all the examples presented since the beginning of this section, the
types were extensible at the end (just before the closing curly bracket).
In late 1995, on proposal of several working groups, the ASN.1 standard
was amended to allow a second extension marker “...” (the notation
with only one marker remains nonetheless valid):

T ::= SEQUENCE { a A,

b B,

...,

...,

c C }

The extension root is then decomposed into two parts (until the
first extension marker, and then after the second one). Extensions are
inserted, one after the other, before the second extension marker that
may appear anywhere in a SEQUENCE, SET or CHOICE type. These types
remain nevertheless extensible only in one place at a time (namely im-
mediately before the second marker), i.e. there can be at most two
extension markers in a constructed type.

Besides, when several extensions are added in a SEQUENCE or SET type
and if some of them are marked OPTIONAL or DEFAULT, the decoder cannot
infer the difference between an optional extension for which no value was
provided and a non-optional extension that was not taken into account
in the version of the sending application. To tackle the problem, we can
delimit the different versions of the SEQUENCE, SET and CHOICE types with
version double square brackets “[[” and “]]”:

Afters ::= CHOICE {

cheese IA5String,

dessert IA5String,

...!ExtensionPb:greedy,

[[coffee NULL]], -- version 2

[[cognac IA5String]] } -- version 3

22We assume the three applications use different versions of the same abstract
syntax (i.e. all versions are registered with the same object identifier).

250 ASN.1 – Communication between Heterogeneous Systems

Application A
version 2

Relay
version 1

Application B
version 3

(1)

(2)

Figure 12.2: An example of relay between different extensions of the
same specification

If the extension consists in adding only one new component, the version
double square brackets can be omitted.

In type T below, if either of the mandatory components d or e appear
in one of the values, the other should also appear (such a condition
cannot be denoted without the version double square brackets, except
when using a WITH COMPONENTS constraint, see Section 13.9 on page 277):

T ::= SEQUENCE { a A,

b B,

...,

[[d D,

e E]],

...,

c C }

Ignored by the Basic Encoding Rules (BER), the double square
brackets have the advantage of cutting down the size of the encoding
when using the Packed Encoding Rules23 (PER). The extension markers
and the version brackets do not change in any way the abstract value
notation of each type.

In order to ensure the tag distinctness and the decoding determinism,
a few specific rules apply to the constructed types:

• if the module includes the AUTOMATIC TAGS clause in its header and
providing no root component is already tagged by the specifier,
the root components (possibly made of two parts) are tagged first
before tagging the extensions in their order of appearance;

• no extension can be tagged by the specifier if no root component
is tagged manually first;

23Some specifiers may be tempted to replace in the example T above the extension
group (nested in version brackets) with a SEQUENCE type whose components would
consist of these extensions. Even though this substitution has no effect on the PER
encoding of the type T (see Section 20.6.12 on page 446), the version brackets should
be preferred since they have a semantics that is independent from the encoding rules.

12 - Constructed types, tagging, extensibility rules 251

• the tags of the extensions in a SET or CHOICE type must be or-
dered according to the following canonical order : first, the tags of
UNIVERSAL class, then the APPLICATION class tags, the PRIVATE class
tags and finally those of context-specific class; in every class, the
tag numbers should be in increasing order;

• a virtual component or alternative is added at the insertion point
of the extensible SEQUENCE, SET and CHOICE types (at the end of
the type definition if it contains a single extension marker or if the
module includes the EXTENSIBILITY IMPLIED clause in its header,
or just before the second marker otherwise) so that a BER, CER
or DER decoder that would conform to a version 1 of an abstract
syntax could associate the reception of an unknown component
with the appropriate extension marker to trigger the dedicated
exception if necessary; this virtual component’s tag is different
from any of those potentially defined in ASN.1 (say [IMAGINARY

0]); it is added once developed the COMPONENTS OF clauses; we may
then check the condition on distinct tags according to the rules
given in the previous sections of this chapter, leaving aside the
extension markers and the version double square brackets. The
tag distinctness is therefore not respected for a type24 such as:

Person ::= SET {

surname [0] IA5String,

first-name [1] IA5String,

contact CHOICE { phone-number [2] NumericString,

e-mail-address [3] NumericString,

... },

info CHOICE { age [4] INTEGER,

... } }

since the addition of virtual components would lead to the type
described on the top of the following page, which does not comply
with the tag distinctness condition.

24This type is not defined in an automatic tagging environment (in such an envi-
ronment, there is no need to test the addition of an imaginary component).

252 ASN.1 – Communication between Heterogeneous Systems

Person ::= SET {

surname [0] IA5String,

first-name [1] IA5String,

contact CHOICE { phone-number [2] NumericString,

e-mail-address [3] NumericString,

...,

imaginary [IMAGINARY 0] T },

info CHOICE { age [4] INTEGER,

...,

imaginary [IMAGINARY 0] T} }

Various examples are given in [ISO8824-1, clause 47.8]. To go fur-
ther, the reader may consider consider the following type, found in
ITU-T recommendation H.245 about multimedia system control25:

MasterSlaveDeterminationReject ::= SEQUENCE {

cause CHOICE { identicalNumbers NULL,

...},

...}

To spare us fastidious checkings, it is recommended to include the
AUTOMATIC TAGS clause in the module header before starting defining ex-
tensible types.

It is particularly recommended to use extension markers (with which
exception markers should be associated when possible) in the specifi-
cations that are still under construction to avoid interworking prob-
lems in the future26. A specifier may also decide that every one of the
ENUMERATED, SEQUENCE, SET and CHOICE types but those imported in the
module are extensible by default. For this the clause EXTENSIBILITY

IMPLIED should be inserted in the module header:

ModuleName DEFINITIONS AUTOMATIC TAGS

EXTENSIBILITY IMPLIED ::=

BEGIN

-- ...

END

Although extension markers have been very popular in specifica-
tions since 1994, we hardly ever come across the EXTENSIBILITY IMPLIED

25Indeed this type is correct in the context of the H.245 ASN.1 module, which
includes the AUTOMATIC TAGS clause in its header.

26In terms of encoding the cost is very low: no extra octet when using the BER,
an extra bit per extension marker for the PER.

12 - Constructed types, tagging, extensibility rules 253

clause. It is worthwhile mentioning its side effect for the PER encod-
ing (see Chapter 20): an extensibility bit is systematically added before
encoding all the values of ENUMERATED, SEQUENCE, SET and CHOICE types.
The specifier should also make sure to insert the extension marker “...”
before actually extending one of the types defined in the module that
has the EXTENSIBILITY IMPLIED clause in its header.

When producing a new version of a module registered in the reg-
istration tree (see on page 163), its object identifier does not change
if the modifications that motivated the updating were only related to
the extensible types. Indeed, the concept of extension markers makes it
possible to generate encoders and decoders that can manage differences
between versions.

12.9.2 Reference Manual

ExtensionAndException → “...”
| “...” ExceptionSpec

OptionalExtensionMarker → “,” “...”
| ε

ExtensionEndMarker → “,” “...”

〈1〉 An extension marker “...” can appear (since ASN.1:1994) in
ENUMERATED, SEQUENCE, SET and CHOICE types, in subtype constraints (see
Section 13.12 on page 291), in object sets (see on page 331) or in value
sets (see on page 333). It indicates that if a decoder detects extra or
missing elements when comparing with those of the specification, it must
not treat them as an error during the decoding process.
〈2〉 An ENUMERATED, SEQUENCE, SET or CHOICE type that does not include an
extension marker is extensible if the module includes the EXTENSIBILITY

IMPLIED clause in its header (see on page 114).
〈3〉 If the extension marker is combined with an exception marker (see
production ExceptionSpec on page 255), this means that the decoder
should execute a specific action if it receives more (or less) elements
than those indicated in the type specification.
〈4〉 The exception marker “!” is not allowed in the ENUMERATED type
at the present time (see rule 〈6〉 on page 139), and neither is it in the
extensible information object sets or in the extensible value sets.
〈5〉 The extension root consists of the components appearing before the
first extension marker “...” and of those appearing after the second one
if present. The extensions are the components (or groups of components

254 ASN.1 – Communication between Heterogeneous Systems

in version double square brackets) appearing after the extension marker
when there is only one and between the two markers otherwise (see also
rule 〈6〉 on page 294).
〈6〉 If there is only one extension marker, the extensions introduced for
a new version of the procotol must be inserted just before the closing
curly bracket.
〈7〉 For the SEQUENCE, SET and CHOICE types, if there are two extension
markers, new components are inserted just before the second marker.
〈8〉 For the SEQUENCE, SET and CHOICE types, extensions may be grouped
with the version brackets “[[” and “]]” to highlight the different ver-
sions of the specification.
〈9〉 A type containing an extension marker can be referenced by another
type containing an extension marker, whether it is in the extension root
of this type or within an extension. In such cases, the extensions are
treated separately and the extensibility of a referenced type has no im-
pact on the type that references it.
〈10〉 If a type defined with an extensible constraint is referenced in a
subtype constraint by type inclusion (production ContainedSubtype on
page 263), the resulting type does not inherit the extension marker. For
example, if A ::= INTEGER(0..10, ...), then B ::= INTEGER(A) is not
extensible, but C ::= INTEGER(A, ...) is extensible.
〈11〉 If a type defined with an extensible constraint is constrained else-
where by a non-extensible constraint, the resulting type is not extensi-
ble. For example, if A ::= INTEGER(0..10, ...), then B ::= A(2..5)

is not extensible, but C ::= A is extensible.

〈12〉 If a type followed by an extensible constraint is constrained else-
where by another extensible constraint, the root of the equivalent con-
straint is obtained by the intersection of the two constraint roots: the
equivalent constraint has the extensions of the second constraint (pro-
vided they exist) . For example, T ::= IA5String (SIZE (1..10, ...,

15..20))(FROM ("AB", ..., "CD")) is equivalent to T ::= IA5String

(SIZE (1..10))(FROM ("AB", ..., "CD")).
〈13〉 When an extensible structured type is subtyped by a constraint on
its components introduced with the keywords WITH COMPONENTS (produc-
tion InnerTypeConstraints page 277), it remains extensible.
〈14〉 The (explicit or implicit) presence of an extension marker in the
definition of a type does not affect the value definition of this type.
〈15〉 The components of a SET or a SEQUENCE, or the alternatives of a
CHOICE, which are marked ABSENT in an InnerTypeConstraints (see on
page 277) cannot be present in a value even if the type is extensible.

12 - Constructed types, tagging, extensibility rules 255

〈16〉 Each time the tag distinctness is required (in extensible SET and
CHOICE types, and for optional components of extensible SEQUENCE types),
the following transformation27 should be virtually applied before check-
ing this condition:

– an extension marker and a virtual component (or alternative)
are added at the end of the type if the module includes the
EXTENSIBILITY IMPLIED clause in its header and if the type has
no extension marker; or

– a virtual component (or alternative) is added at the end of the
type if the module includes the EXTENSIBILITY IMPLIED clause and
if the type has one extension marker; or finally

– a virtual component (or a alternative) is added just before the
second extension marker.

This virtual complement is done once the COMPONENTS OF clauses are ex-
panded. The virtual component (or alternative) is assumed to have a
different tag, say [IMAGINARY 0], from any ASN.1 type tag (not virtual),
but this tag must remain the same for all the virtual components (or
alternatives). If the condition on distinct tags is not respected after the
addition of these virtual components (or alternatives), the type defini-
tion is not valid. An example can be found on page 251.
〈17〉 The previous rule needs not apply if the module includes
the AUTOMATIC TAGS clause in its header. However using only the
EXTENSIBILITY IMPLIED clause in the module header does exclude this
previous rule (see rule 〈10〉 on page 114).

ExceptionSpec → “!” ExceptionIdentification
| ε

〈18〉 In a complex ASN.1 specification, the decoder may have to execute
a specific action if it receives more (or less) elements than those indi-
cated in the constructed type specification or if a subtype constraint is
not respected (it may happen when it is parameterized, see rule 〈3〉 on
page 293). In such cases, the application designer should be told what

27This rule is meant to ensure that a BER, CER or DER decoder conforms to some
earlier version of an abstract syntax, which receives an unknown component, should
associate it with the appropriate extension marker and trigger the right exception.
For example, this is particularly useful when extensible CHOICE types are components
of another extensible type.

256 ASN.1 – Communication between Heterogeneous Systems

specific actions to carry out. If an ExceptionSpec is present, the appli-
cation may undertake actions that depend on the implementation.
〈19〉 For the time being, the ASN.1 grammar does not systematically
allow associating an exception marker to all the occurrences of the ex-
tension marker “...” (it is the case for extensible information object
sets, for example).

ExceptionIdentification → SignedNumber
| DefinedValue
| Type “:” Value

〈20〉 DefinedValue must reference a value of type INTEGER.
〈21〉 The third alternative denotes an exception Value of any Type
(the syntax is similar to that of the production OpenTypeFieldVal on
page 348).

Chapter 13

Subtype constraints

Contents

13.1 Basics of subtyping . 258

13.2 Single value constraint 260

13.3 Type inclusion constraint 261

13.4 Value range constraint 263

13.5 Size constraint . 266

13.6 Alphabet constraint . 268

13.7 Regular expression constraint 271

13.8 Constraint on SEQUENCE OF or SET OF elements 275

13.9 Constraints on SEQUENCE, SET or CHOICE components . . 277

13.10 Subtyping the content of an octet string 283

13.11 Constraint combinations 285

13.12 Constraint extensibility 291

13.13 User-defined constraint 294

By the slightest constraint am I afflicted
And I solely rejoiced
In what for myself I neglected.

Tristan L’Hermite, Les Amours.

In the last three chapters, we have introduced ASN.1 basic and con-
structed types, the latter relying on the former to define more complex

258 ASN.1 – Communication between Heterogeneous Systems

types. Most of the types that can be written with this material actually
correspond to infinite sets of values. We now see how to restrict this set
of potential values for a type.

13.1 Basics of subtyping

13.1.1 User’s Guide

Many reasons may induce a specifier to use subtype constraints. First,
subtyping formally refines a specification in the sense that it makes it
more precise and closer to the data it models (without it, such informa-
tion might have been indicated in comments but would not have been
treated by ASN.1 compilers). Unfortunately, all the compilers available
on the market do not generate encoders which check that the data pro-
vided by the communicating application respect the subtype constraints
of the abstract syntax. As a result, every application designer has to
develop and implement the adequate algorithms whereas these could be
generated automatically from the ASN.1 descriptions1.

Second, subtyping often ensures interworking2 by improving the en-
coder and decoder implementation so that communicating applications
(written in C language for the great majority) can manage their mem-
ory space more easily (when the default character string size is limited
for instance).

Finally, subtyping sometimes makes it possible to generate a more
compact transfer syntax. We will see in Chapter 20 that some sub-
type constraints are very useful for PER encoding. On the other hand,
the BER encoding rules do not use them at all (see Section 18.2.17 on
page 410). Note, however, that subtype constraints apply on values that
comply with the abstract syntax and do not, therefore, directly influence
the transfer syntax (for example, a constraint like SIZE (4) applied to a
character string of type UniversalString limits the size of the encoded
string to 16 octets).

1If the compiler generates automatically these test functions, it is recommended
to remove or simply comment out these tests in the application itself to gain in
processing time.

2Today’s booming protocols such as videoconferencing (see on page 84) or the aero-
nautical telecommunication networks (see on page 91) in particular, rely on ASN.1
subtype constraints to permit the communicating systems to interwork more effi-
ciently.

13 - Subtype constraints 259

Generally speaking, ASN.1 subtype constraints are indicated in
round brackets after the type expressions. The diversity of constraints
may seem daunting at first glance; we will describe them one by one
and show how to combine one with another to refine the specification as
needed.

13.1.2 Reference Manual

ConstrainedType → Type Constraint
| TypeWithConstraint

〈1〉 All the constraints after Type should share at least one common
value with it (see rule 〈17〉 on page 291).
〈2〉 If several Constraints appear one after the other after Type, the pos-
sible values for this type are those of the intersection of constraints (see
also rules 〈7〉 and 〈8〉 below).
〈3〉 In ASN.1:1990, the set of values corresponding to a constraint had
to be included in the set of values of the constrained type (i.e. the
type appearing before the constraint). If A ::= INTEGER (0|1|10), then
B ::= A (1..10) was not valid (see also footnote 12 on page 285).
〈4〉 If Type is (literally) a SelectionType, it is the CHOICE type that is
constrained (hence the constraint is ignored as explained in rule 〈4〉 on
page 240). If Type is a reference to a SelectionType, it is the selected
type that is constrained, and not the CHOICE type.
〈5〉 If Type is (literally) a SEQUENCE OF or SET OF type, the Constraint
applies on the type appearing after the keywords SEQUENCE OF or SET OF

(see the differences with the production TypeWithConstraint on pages
232 and 234). If Type is a reference to a SEQUENCE OF or SET OF type,
the Constraint applies to the SEQUENCE OF or SET OF type, and not to
the type that follows these keywords.
〈6〉 An extensible structured type that is subtyped by a constraint on its
components introduced with the keywords WITH COMPONENTS (production
InnerTypeConstraints page 277) remains extensible.
〈7〉 If a type defined with an extensible constraint is constrained further
on with a non-extensible constraint, the resulting type is not extensible,
For example, A ::= INTEGER (0..10, ...), then B ::= A (2..5) is not
extensible, but C ::= A is.

260 ASN.1 – Communication between Heterogeneous Systems

〈8〉 If a type followed by an extensible constraint is constrained fur-
ther on with another extensible constraint, the root of the equivalent
constraint is obtained by intersection of the roots of each constraint;
the equivalent constraint has the extensions of the second constraint
(if present). For example, T ::= IA5String (SIZE (1..10, ...,

15..20))(FROM ("AB", ..., "CD")) is equivalent to T ::= IA5String

(SIZE (1..10))(FROM ("AB", ..., "CD")).
〈9〉 If a type defined with an extensible constraint is referenced in a con-
straint by type inclusion (production ContainedSubtype on page 263),
the resulting type does not inherit the extension marker. For example,
if A ::= INTEGER (0..10, ...), then B ::= INTEGER (A) is not extensi-
ble, but C ::= INTEGER (A, ...) is.
〈10〉 If a type is constrained several times with extensible constraints or
if a type with an extensible constraint is referenced as a ContainedSub-
type (see on page 263) in another extensible constraint, the exception
marker that must be associated with the type is the marker of the out-
ermost constraint. The outermost constraint is that of the highest level
type in the breakdown structure of referencing. For example, if T ::=

INTEGER(0..5, ...!5) and U ::= INTEGER(T|10..15, ...!15, 20..25),
then the exception associated with U is 15 (and not 5).

13.2 Single value constraint

13.2.1 User’s Guide

The simplest form of subtyping consists in limiting the set of values for
a type to a single value. For this, this value should be written in round
brackets after the type. The value should, of course, conform to the
constrained type. This subtype constraint can be applied to any ASN.1
type:

Two ::= INTEGER (2)

Day ::= ENUMERATED { monday(0), tuesday(1), wednesday(2),

thursday(3), friday(4), saturday(5), sunday(6) }

Wednesday ::= Day (wednesday)

FourZ ::= IA5String ("ZZZZ")

Afters ::= CHOICE {

cheese IA5String,

dessert ENUMERATED { profiterolles(1), sabayon(2),

fraisier(3) }}

CompulsoryAfters ::= Afters (dessert:sabayon)

13 - Subtype constraints 261

In the examples above, Two and Wednesday are types (they begin with
an upper-case letter) even though they contain only one value and FourZ

is a character string type that contains the unique string made of exactly
four capital letters “Z”. The last type describes how to constrain the type
Afters so that one has to have a sabayon for dessert when having afters!

This form of subtyping becomes all the more interesting when con-
straining a type to a limited number of values listed in round brackets
separated by a vertical bar (union symbol):

WeekEnd ::= Day (saturday|sunday)

PushButtonDial ::= IA5String ("0"|"1"|"2"|"3"|

"4"|"5"|"6"|"7"|"8"|"9"|"*"|"#")

Note that the type PushButtonDial contains twelve strings of a single
character (and not strings of any number of the twelve characters listed).

13.2.2 Reference Manual

SingleValue → Value

〈1〉 Value must be a value of the parent type3 or of a type that is com-
patible with this parent type according to the semantic model of ASN.1
(see Section 9.4 on page 121).
〈2〉 This subtype constraint can be applied to any type.
〈3〉 In general, a type is constrained by a series of values separated by a
union vertical bar “|” presented in Section 13.11.2 on page 288.

13.3 Type inclusion constraint

13.3.1 User’s Guide

To constrain a type to the same set of values as another, the correspond-
ing type reference is given in round brackets:

FrenchWeekEnd ::= Day (WeekEnd)

which means that the type FrenchWeekEnd is a type Day that contains
only the values of the type WeekEnd (those two types were defined in
the previous section). The constrained type (Day) and the contained (or
included) type (WeekEnd) should obviously derive from the same type

3We call parent type, the type that appears just before the subtype constraint (up
to the bracket that opens this constraint). The parent type can also include a subtype
constraint itself. Hence, a parent type is specific to a given subtype constraint.

262 ASN.1 – Communication between Heterogeneous Systems

(ENUMERATED here) or should be compatible according to the semantic
model of ASN.1 as described in Section 9.4 on page 121.

When used alone as above, the constraint by type inclusion is of
little interest. It is very often used jointly with single value constraints
separated by a vertical bar:

LongWeekEnd ::= Day (WeekEnd|monday)

The capital letter of WeekEnd and the small letter of monday make the
distinction between a type for the former and a value for the latter.

In the following example (where the constrained and contained types
both derive from the basic type INTEGER), there is no need to perform
an intersection because both types T1 and T2 have an infinite set of
integers4:

T1 ::= INTEGER {trois(3), quatre(4)}
T2 ::= INTEGER {one(1), two(2), three(3), four(4)}(T1)

and the type T2 is therefore equivalent to INTEGER {one(1), two(2),

three(3), four(4)}.
As mentioned in Chapter 11 about character string types, this form

of subtyping can easily define specific alphabets, derived in particular
from the UniversalString and BMPString types:

RussianName ::= Cyrillic (Level1)

where Cyrillic and Level1 are collections of characters derived from
the BMPString type5 and defined in the module ASN1-CHARACTER-MODULE

(see rule 〈52〉 on page 197). In fact, RussianName contains all the
character strings that are both in the Cyrillic and Level1 sets.

Before the 1994 version of the ASN.1 standard, the keyword INCLUDES

was necessary to introduce a constraint by type inclusion:

FrenchWeekEnd ::= Day (INCLUDES WeekEnd)

The keyword has become optional since then to make combinations of
subtype constraints easier to write (see Section 13.11 on page 285).

4Some compilers, however, operate this intersection, wrongly considering the iden-
tifiers (or even the numbers) even though this intersection has also an infinite set
integers.

5Besides, the type BMPString is formally defined in the ASN.1 standard as:
BMPString ::= [UNIVERSAL 30] UniversalString (Bmp) where the type Bmp is defined
in the module ASN1-CHARACTER-MODULE.

13 - Subtype constraints 263

13.3.2 Reference Manual

ContainedSubtype → Includes Type

〈1〉 Type must be derived (by subtyping or compatibility according to
the rules of ASN.1 semantic model defined in Section 9.4 on page 121)
from the same primitive type as the parent type.
〈2〉 The permitted values are those belonging to both the parent type
(see footnote 3 on page 261) and Type (set intersection).
〈3〉 If Type includes a tag, this must be ignored.
〈4〉 This subtype constraint can be applied to any type but EMBEDDED

PDV, EXTERNAL, CHARACTER STRING and the open types (see next rule).
〈5〉 If the parent type is an open type (the only open type in ASN.1 is
ObjectClassFieldType when it denotes a type field, a variable-type value
field or a variable-type value set field of an information object class, see
rule 〈3〉 on page 347), the production TypeConstraint on page 352 must
be used.
〈6〉 If Type has an extensible constraint, the resulting type does not
inherit the extension marker. For example, if A ::= INTEGER (0..10,

...), then B ::= INTEGER (A) is not extensible but C ::= INTEGER (A,

...) is.

Includes → INCLUDES

| ε
〈7〉 The keyword INCLUDES was mandatory in ASN.1:1990; its being op-
tional since ASN.1:1994 makes writing combinations of subtype con-
straints easier (see production ElementSetSpecs on page 288). It remains
mandatory in the unlikely case of a ContainedSubtype constraint apply-
ing to a NULL type!

13.4 Value range constraint

13.4.1 User’s Guide

The INTEGER and REAL types, as in mathematics, can be constrained to
have values on an interval. The interval boundaries are separated by the
symbol “..” and if the sign “<” appears on the right or left-hand side

264 ASN.1 – Communication between Heterogeneous Systems

of this symbol, the interval is open on that side (i.e. the boundary does
not belong to the interval):

Number ::= INTEGER

From3to15 ::= Number (3..15)

From3excludedTo15excluded ::= Number (3<..<15)

The keywords MIN and MAX denote the maximum and minimum values
(or upper and lower bound) of the parent type (the one which is before
the constraint round brackets):

PositiveOrZeroNumber ::= Number (0..MAX)

PositiveNumber ::= Number (0<..MAX)

NegativeOrZeroNumber ::= Number (MIN..0)

NegativeNumber ::= Number (MIN..<0)

In the case of the REAL type, the effective minimal and maximal
values of the parent type are (mathematically speaking) decimals that
may have a great number of digits if the boundary is excluded. But this
is no cause for misunderstanding6:

T ::= REAL (0..<{mantissa 5,base 10,exponent 0})
U ::= T ({mantissa 2,base 10,exponent 0}..MAX)

In the type U, MAX stands for the greatest decimal number strictly smaller
than 5. In ASN.1, the type U is therefore equivalent to the type:

U ::= REAL ({mantissa 2,base 10,exponent 0}..
<{mantissa 5,base 10,exponent 0})

As ASN.1 integers may be arbitrarily long, it is recommended to con-
strain the type whenever it is possible in order to facilitate interworking.
The specifiers whose module are encoded in PER should keep in mind
that a type judiciously subtyped like INTEGER (123456788..123456789)

is encoded on... 1 bit! It is therefore important for them not to neglect
subtype constraints.

It is sometimes quite easy to confuse the types:

Interval ::= INTEGER {one(1), two(2)} (one..two)

Enumeration ::= ENUMERATED {one(1), two(2)}
But we should remember that an ENUMERATED type does not model a con-
strained list of named integers but a list of states with which a number

6However, the fact that decimals could be arbitrarily long may induce interworking
problems and we will see in Section 13.9 on page 277 how to constrain more finely
the mantissa, the base and the exponent of a REAL value.

13 - Subtype constraints 265

is associated for encoding purpose. Besides, since no order relation is
defined on the ENUMERATED type, it cannot be constrained by value range.

We will see in Section 13.6 that a value range constraint can also
appear after the keyword FROM to limit the alphabet of some character
strings types.

13.4.2 Reference Manual

ValueRange → LowerEndPoint “..” UpperEndPoint

〈1〉 This subtype constraint can only be applied to INTEGER and REAL

types. It can also appear in a constraint by permitted alphabet (key-
word FROM) applied to a character string type whose alphabet has
been assigned an order relation, namely IA5String, NumericString,
PrintableString, VisibleString (or ISO646String), UniversalString,
UTF8String and BMPString (see rule 〈6〉 on page 270). The use of an
interval in a constraint by permitted alphabet was not allowed in the
ASN.1:1990 standard.
〈2〉 LowerEndPoint cannot be greater than UpperEndPoint.

LowerEndPoint → LowerEndValue
| LowerEndValue “<”

UpperEndPoint → UpperEndValue
| “<” UpperEndValue

〈3〉 The sign “<” is used to open the interval (i.e. to exclude the bound-
ary).
〈4〉 The interval LowerEndPoint..UpperEndPoint must contain at least
one value that belongs to the parent type.

LowerEndValue → Value
| MIN

UpperEndValue → Value
| MAX

〈5〉 Value must be a value of the parent type or of a type that is com-
patible with the parent type according to the semantic model of ASN.1
(see Section 9.4 on page 121).
〈6〉 MIN and MAX denote the minimal and maximal values allowed by the
parent type (see footnote 3 on page 261).
〈7〉 If the parent type is UniversalString, UTF8String, BMPString or
IA5String (see rule 〈1〉 on this page), each interval boundary of the

266 ASN.1 – Communication between Heterogeneous Systems

permitted alphabet constraint can be either one of the character ref-
erences defined in the module ASN1-CHARACTER-MODULE (see rule 〈52〉 on
page 197), or a character string cstring (or a reference to such a string)
including only one character, or a Quadruple (see on page 196) or a Tu-
ple (see on page 197) that points to a character in the character table
of the type.
〈8〉 If the parent type is NumericString, PrintableString, VisibleString
or ISO646String (see rule 〈1〉 on the preceding page), each interval
boundary of the permitted alphabet constraint must be a character
string cstring (or a reference to such a string) including only one char-
acter.

13.5 Size constraint

13.5.1 User’s Guide

Particularly useful for interworking and memory space dimensioning of
applications, the size constraint can limit the length of bit, octet or
character strings, but also the number of elements for SEQUENCE OF or
SET OF values.

A size constraint is indicated with the keyword SIZE followed by a
constraint7 (by value range or single value in particular) that conforms
to the type INTEGER (0..MAX) of natural numbers:

Exactly31BitsString ::= BIT STRING (SIZE (31))

StringOf31BitsAtTheMost ::= BIT STRING (SIZE (0..31))

EvenNumber ::= INTEGER (2|4|6|8|10)

EvenLengthString ::=

IA5String (SIZE (INCLUDES EvenNumber))

NonEmptyString ::= OCTET STRING (SIZE (1..MAX))

Note that between the first two types, the difference amounts to the
use of a value range constraint within the size constraint of the type
StringOf31BitsAtTheMost. In the last type, the keyword MAX denotes the
maximum value of the INTEGER type.

In the following example:

ListOfStringsOf5Characters ::=

SEQUENCE OF PrintableString (SIZE (5))

7This very constraint clustering explains the double level of round brackets in the
SIZE constraint. We shall see similar cases where subtype constraints reference one
another.

13 - Subtype constraints 267

the constraint applies to the type that immediately precedes it, i.e.
PrintableString, and the type ListOfStringsOf5Characters models a
list of any number of strings, every one of which is made of exactly five
characters. But if we write:

ListOfStrings ::= SEQUENCE OF PrintableString

ListOf5Strings ::= ListOfStrings (SIZE (5))

the constraint applies to the type ListOfStrings, which is a reference
to a SEQUENCE OF type. Then the type ListOf5Strings models lists of
exactly five strings, each of which has any number of characters.

To directly subtype the SEQUENCE OF and SET OF types without using
the intermediate reference of the previous example, the general rules
according to which subtype constraints appear in round brackets after
the type has been relaxed and a special syntax has been introduced for
these two types: the constraint can be inserted between the keywords
SEQUENCE (or SET) and OF as in:

ListOf5Strings ::= SEQUENCE (SIZE (5)) OF PrintableString

ListOf5StringsOf5Characters ::=

SEQUENCE (SIZE (5)) OF PrintableString (SIZE (5))

Until 1994, this constraint could not include ‘outside’ round brackets
and was written:

ListOf5StringsOf5Characters ::=

SEQUENCE SIZE (5) OF PrintableString (SIZE (5))

This double level of round brackets was introduced to homogenize
the syntax of the various subtype constraints since other constraints
have been allowed at that place since the 1994 edition (see rules 〈3〉 on
page 232 and 〈3〉 on page 234).

13.5.2 Reference Manual

SizeConstraint → SIZE Constraint

〈1〉 Constraint must be a valid subtype constraint for the parent type
INTEGER (0..MAX). It is denoted in round brackets.
〈2〉 This constraint can only apply to the types BIT STRING, OCTET

STRING, SEQUENCE OF, SET OF, to one of the character string types defined
in Chapter 11 (these types are listed on page 192) or to the CHARACTER

STRING type (see rule 〈5〉 on page 308).
〈3〉 The unit of measure is the bit for the type BIT STRING, the octet for
the type OCTET STRING, the element for the type SET OF or SEQUENCE OF

and the character for the character string types.

268 ASN.1 – Communication between Heterogeneous Systems

〈4〉 When the SIZE constraint is extensible, a definition such
as T ::= IA5String (SIZE (1|2, ..., 3)) is equivalent to T ::=

IA5String (SIZE (1|2), ..., SIZE (1|2|3)).

TypeWithConstraint → SEQUENCE Constraint OF Type
| SEQUENCE SizeConstraint OF Type
| SET Constraint OF Type
| SET SizeConstraint OF Type

〈5〉 The production TypeWithConstraint is explained on pages 232 and
234.

13.6 Alphabet constraint

13.6.1 User’s Guide

The ASN.1 character string types (introduced in Chapter 11) generally
have too large alphabet to make a real interworking possible. It is there-
fore recommended and sometimes even necessary to limit their alphabet,
i.e. the set of characters available for writing character strings of one of
those types.

We have already mentioned that, in practice, few compilers check for
the conformity of transmitted values to the subtype constraints; it proves
all the more relevant for the permitted alphabet constraint. However,
this subtype constraint can still be very useful, for it makes the ASN.1
specification easier to understand by forbidding characters, encoded on
several bytes (but are represented by the same graphical symbol in the
abstract syntax) or escape characters which change the interpretation
of the following character.

In order to limit the alphabet of a character string type, we use the
keyword FROM and separate the characters by a vertical bar:

Morse ::= PrintableString (FROM ("."|"-"|" "))

IDCardNumber ::=

NumericString (FROM ("0".."9"))

PushButtonDialSequence ::=

IA5String (FROM ("0".."9"|"*"|"#"))

As shown in these two examples, it is possible to insert a value range con-
straint in a constraint by permitted alphabet (which is the reason for the
double level of round brackets) provided the character string type was at-
tributed an order relation on its alphabet. It has been so since 1994 for

13 - Subtype constraints 269

the types NumericString, PrintableString, IA5String, TeletexString,
T61String, VisibleString, ISO646String, BMPString, UniversalString

and UTF8String.
The Morse type above, which includes character strings made of any

number of dots, dashes and spaces should not be confused with the type:

MorseAlphabet ::= PrintableString ("."|"-"|" ")

which contains only three strings of a single character8.
Although it is allowed by ASN.1 syntax, the following definition

makes no sense:

WrongType ::= IA5String (FROM ("Albert".."Zoe"))

since the canonical order mentioned in Chapter 11 is defined only on
characters but not on character strings.

Besides, since 1994, it has been allowed to write:

Dna ::= PrintableString (FROM ("TAGC"))

Although the semantic interpretation is not given by the standard, the
character strings of type Dna include any number of characters among T,
A, G and C, which means that the previous type is equivalent to:

Dna::= PrintableString (FROM ("T"|"A"|"G"|"C"))

13.6.2 Reference Manual

PermittedAlphabet → FROM Constraint

〈1〉 Constraint must make up an alphabet included in that of the primi-
tive constrained type. The constraint must be written in round brackets.
〈2〉 If Constraint does not include one-character strings, the strings made
of several characters are equivalent to a union of one-character strings
(i.e. separated by “|”). This rule did not exist in ASN.1:1990 since
strings had to conform to the parent type constrained by SIZE (1).

8Similarly, we should not confuse the type PushButtonDialSequence above with the
type PushButtonDial defined on page 261. In fact, for the following examples:

BasicLatin-or-Arabic ::= BMPString (BasicLatin|Arabic)

BasicLatin-and-Arabic ::= BMPString (FROM (BasicLatin|Arabic))

a string of type BasicLatin-or-Arabic is either a string of type BasicLatin, or a string
of type Arabic, although a string of type BasicLatin-and-Arabic is made of characters
picked indifferently in the alphabets of type BasicLatin and Arabic. The reader may
refer to a similar example for the types CapitalAndSmall and CapitalOrSmall defined
on page 287.

270 ASN.1 – Communication between Heterogeneous Systems

〈3〉 This subtype constraint may be applied to any character string type
(production RestrictedCharacterStringType page 192).
〈4〉 Constraint can sometimes include a character interval (see produc-
tion ValueRange below.
〈5〉 When the FROM constraint is extensible, a definition like T ::=

IA5String (FROM ("abc", ..., "de")) is equivalent to T ::= IA5String

(FROM ("abc"), ..., FROM ("abcde")).

ValueRange → LowerEndPoint “..” UpperEndPoint

〈6〉 The ValueRange constraint can appear in a PermittedAlphabet con-
straint applied to a character string type for which an order relation
has been defined on its alphabet, namely IA5String (see rule 〈12〉
on page 193), NumericString (see 〈15〉 on page 193), PrintableString

(see 〈17〉 on page 194), VisibleString or ISO646String (see 〈33〉 on
page 195), UniversalString (see 〈46〉 on page 196), UTF8String (see 〈46〉
on page 196) and BMPString (see 〈47〉 on page 196).
〈7〉 LowerEndPoint must not be greater than UpperEndPoint according
to the order relation defined on the relevant character string type (see
Table 20.3 on page 444).
〈8〉 The use of a value range in a permitted alphabet constraint was not
allowed in the ASN.1:1990 standard.

LowerEndPoint → LowerEndValue
| LowerEndValue “<”

UpperEndPoint → UpperEndValue
| “<” UpperEndValue

〈9〉 The symbol “<” can be used to represent a semi-open or open interval
(i.e. excluding one of the boundaries or both), even though it is useless
for character string types

LowerEndValue → Value
| MIN

UpperEndValue → Value
| MAX

〈10〉 Value must be a value of the parent type or a value of a type that
is compatible with this parent type according to the semantic model of
ASN.1 (see Section 11.14 on page 197).
〈11〉 If the parent type is UniversalString, UTF8String, BMPString

or IA5String (see rule 〈1〉 on page 265), each interval boundary of
the permitted alphabet constraint can be either one of the character

13 - Subtype constraints 271

references defined in the module ASN1-CHARACTER-MODULE (see rule 〈52〉
on page 197), or a character string cstring (or a reference to such a
string) including only one character, or a Quadruple (see on page 196)
or a Tuple (see on page 197) which point to a character in the character
table of the type.
〈12〉 If the parent type is NumericString, PrintableString,
VisibleString or ISO646String (see rule 〈1〉 on page 265), each
interval boundary of the permitted alphabet constraint must be a
character string cstring (or a reference to such a string) including only
one character.
〈13〉 MIN and MAX denote the smallest or the greatest character of the
parent type according to the canonical order defined on the character
string type.

13.7 Regular expression constraint

13.7.1 User’s Guide

While investigating the correspondence of types between XML Schemas
[W3C00] and ASN.1 (see Section 21.5 on page 458), the ASN.1 working
group have acknowledged the interest of using regular expressions to
define some character string subtype constraints.

The corrigendum for the ASN.1 standard [ISO8824-1DTC4] that
will introduce these regular expressions is now circulating among the
national bodies of ISO and ITU-T for vote.

Subtypes using regular expressions will be introduced with the key-
word PATTERN followed by a character string; these expressions will con-
sist of the metacharacters given in Table 13.1 on the following page.
This notation is very similar to what can be found in Perl, XML or
Unix with the grep command; for ASN.1, specific features have been
added to reference the characters of the UniversalString alphabet.

The subtyping constraint will be satisfied if all the characters match
the pattern given by the regular expression.

For example, regular expressions would make it possible to define
exactly formats for dates, prices or phone numbers as in:

DateAndTime ::=

VisibleString(PATTERN "\d#2/\d#2/\d#4-\d#2:\d#2")

-- DD/MM/YYYY-HH:MM

272 ASN.1 – Communication between Heterogeneous Systems

Metacharacter Meaning

[] Match any character in the set where ranges are
denoted by “-”. A caret “^” after the opening
curly bracket complements the set next to it.

{g,p,r,c} Match the UniversalString character according to
the Quadruple production on page 196.

\N{name} Match the named character (or any charac-
ter of the named-character set) as defined in
the ASN1-CHARACTER-MODULE (see rule 〈52〉 on
page 197).

. Match any character (except one of ASN.1 newline
characters matched by “\n”).

\d Match any digit (equivalent to "[0-9]").
\w Match any alphanumeric character (equivalent to

"[a-zA-Z0-9]").
\t Match the horizontal tabulation character

(code 9).
\n Match any of the newline characters of codes 9,

10, 13 & 32 in Table 11.2 on page 178.
\r Match the carriage return character (code 13).
\s Match any of ASN.1 white-space characters

(space, tabulations, newlines).
\d Match a (alphanumeric-) word boundary.
\ Quote the next metacharacter and cause it to be

interpreted literally.
\\ Match the backslash character.
"" Match the double-quote character (").

Figure 13.1: Metacharacters for regular expressions

13 - Subtype constraints 273

Metacharacter Meaning

| Alternative between two expressions.
() Grouping of the enclosed expression.
* Match the preceding expression for zero or more

occurences.
+ Match the preceding expression once or several

times.
? Match the preceding expression if present.

#(n) Match the preceding expression exactly n times.
#(n,) Match the preceding expression at least n times.
#(n,m) Match the preceding expression at least n times

but no more than m times.
#(,m) Match the preceding expression no more than m

times (and maybe 0).

Figure 13.2: Metacharacters for regular expressions (continued)

We now give a few more examples of patterns:

• the regular expression "[\d^.-]" matches any single digit, caret,
hyphen or period.

• The regular expression "\w+(\s\w+)*\." matches a sentence made
of at least one (alphanumeric) word.

• The regular expression "\N{greekCapitalLetterSigma}" matches
the GREEK CAPITAL LETTER SIGMA.

• "[\N{BasicLatin}\N{Cyrillic}\N{BasicGreek}]+", or equally
"(\N{BasicLatin}|\N{Cyrillic}|\N{BasicGreek})+", are regular
expressions that match a string made of any (non-zero) number
of characters taken in the three character sets specified by names
defined in [ISO10646-1].

13.7.2 Reference Manual

PatternConstraint → PATTERN Value

〈1〉 The corrigendum to the ASN.1 standard [ISO8824-1DTC4] that
will introduce regular expressions is now circulating among the national
bodies of ISO and ITU-T for vote.

274 ASN.1 – Communication between Heterogeneous Systems

〈2〉 This subtype constraint may be applied to any character string type
(production RestrictedCharacterStringType page 192).
〈3〉 Value must be a character string of type UniversalString (or a ref-
erence to such string) which contains a regular expression. Because the
sets of strings of type UniversalString and UTF8String are the same,
Value may also be a character string of type UTF8String.
〈4〉 A regular expression is a pattern that describes a set of strings whose
format conforms to this pattern. The pattern is more or less the same
as an arithmetic expression in which the operators are the metacharac-
ters defined in Table 13.1 on page 272. The smallest expressions of this
pattern are placeholders that stand for a set of characters.
〈5〉 The regular expression PatternConstraint selects the values of the
parent type that satisfy the entire regular expression. Unlike other reg-
ular expression notations, ASN.1 does not provide the metacharacters
“^” and “$” to match the beginning and the end of a string respectively:
hence, values whose leading and/or trailing characters are not matched
by the regular expression are not accepted, except if the latter includes
“.*” at its beginning, at its end or both.
〈6〉 Most characters (except the metacharacters of Table 13.1 on
page 272) are regular expressions that match themselves.
〈7〉 A list of characters enclosed by “[” and “]” matches any single char-
acter in that list. If the first character of the list is the caret “^”, then the
subexpression matches any character of the parent type that is not in the
list. A range of characters may be specified by giving the first and last
characters (according to the order relation associated with the parent
type, see 〈6〉 on page 270) separated by a hyphen “-”. The metachar-
acters of Table 13.1 on page 272 except “]” and “\” loose their special
meaning between square brackets. The symbol “^” placed anywhere ex-
cept in the first position (or preceded by a backslash “\”) matches a
literal caret. A symbol “-” placed immediately after the opening square
bracket or immediately before the closing square bracket (or preceded
by a backslash “\”) matches a literal hyphen. A symbol “]” that follows
the opening square bracket matches a literal closing square bracket.
〈8〉 To avoid any ambiguity between two [ISO10646-1] charac-
ters that have the same glyph (graphical symbol), the nota-
tions “{group,plane,row,cell}” (similar to the Quadruple gram-
mar production defined on page 196), “\N{valuereference}” (where
valuereference is a reference to one of the characters defined in the
ASN1-CHARACTER-MODULE, see 〈52〉 on page 197) and “\N{typereference}”

13 - Subtype constraints 275

(where typereference is a reference to one of the character sets defined in
the ASN1-CHARACTER-MODULE) are provided (see Table 13.1 on page 272).
〈9〉 Two or more subexpressions may be joined by the infix operator “|”.
The resulting regular expression matches any string matched by either
subexpression.
〈10〉 A subexpression may be followed by one of the repetition operators
defined in Table 13.2 on page 273: “?”, “*”, “+”, “#(n,m)”, “#(n,)”,
“#(,m)” and “#(n)”.
〈11〉 Repetition (see previous rule) takes precedence over concatenation,
which in turn takes precedence over alternation with “|”. These prece-
dence rules may be overriden by adding round brackets (“(” and “)”)
around a subexpression.
〈12〉 When a regular expression contains subexpressions in square brack-
ets (“[” and “]”), each opening bracket “(” (not preceded by a backslash
“\”) is successively assigned a number (beginning at 1) from the left to
the right of the regular expression. Each subexpression can then be ref-
erenced inside a comment with a notation like “\1”, “\2”... that uses the
associated integer. The ASN.1 standard provides this formal notation
for referencing subexpressions in comments or in text associated to an
ASN.1 specification to document it, but there is no obligation to use it:

DateAndTime ::= VisibleString

(PATTERN "((\d#2)/(\d#2)/(\d#4)-(\d#2:\d#2))")

-- \1 is a date in which \2 is the month, \3 the day,

-- \4 the year and \5 the time (in hours and minutes)

13.8 Constraint on SEQUENCE OF or SET OF elements

The constraints described so far applied mainly on basic types; we now
come to constraints for subtyping constructed types.

13.8.1 User’s Guide

As seen in Section 13.5, a SEQUENCE OF or SET OF type can be constrained
inserting the constraint between the keywords SEQUENCE (or SET) and OF.
But if the definition of such a type is imported from another ASN.1
module, we cannot refine it by insertion of a constraint which, should
we remind it, must apply to the elements type (whereas a constraint that
immediately follows a reference to a SEQUENCE OF or SET OF type applies
to this very constructed type). We need, therefore, a constraint that

276 ASN.1 – Communication between Heterogeneous Systems

could go down in the definition of the constructed type to apply on its
elements type: it is the constraint WITH COMPONENT (without final “S”).

Let the type:

TextBlock ::= SEQUENCE OF VisibleString

that we use for defining an address on several lines including no more
than 32 characters:

AddressBlock ::=

TextBlock (WITH COMPONENT (SIZE (1..32)))

or for defining a block that contains only digits (and spaces):

DigitBlock ::=

TextBlock (WITH COMPONENT (NumericString))

where the VisibleString type of the elements of the type TextBlock is
constrained by NumericString, which is a constraint by type inclusion
(the keyword INCLUDES is omitted here). These two types are respectively
equivalent to:

AddressBlock ::= SEQUENCE OF VisibleString (SIZE (1..32))

DigitBlock ::= SEQUENCE OF VisibleString (NumericString)

The keywords WITH COMPONENT may, of course, be followed by any sub-
type constraint conforming to the type of the elements of the SEQUENCE

OF (or SET OF) type.

The constraints can, for example, be ‘piled up’ to subtype the fol-
lowing type:

IntegerMatrix ::=

SEQUENCE SIZE (6) OF SEQUENCE SIZE (6) OF INTEGER

as in:

CoordinateMatrix ::= IntegerMatrix (WITH COMPONENT

(WITH COMPONENT (-100..100)))

which is the type of square matrices of dimension 6 whose elements are
integers between -100 and 100, that is:

CoordinateMatrix ::= SEQUENCE SIZE (6) OF

SEQUENCE SIZE (6) OF INTEGER (-100..100)

We will see in Part III on page 391 that this subtype constraint
influences in no way the BER or PER encodings of a value of type
SEQUENCE OF or SET OF.

13 - Subtype constraints 277

13.8.2 Reference Manual

InnerTypeConstraints →
WITH COMPONENT SingleTypeConstraint
| WITH COMPONENTS MultipleTypeConstraints

〈1〉 The clause WITH COMPONENT is allowed only if the parent type is SET

OF or SEQUENCE OF.
〈2〉 The clause WITH COMPONENTS (which applies on types like SEQUENCE or
SET) is exposed in Section 13.9.2 on page 281.

SingleTypeConstraint → Constraint

〈3〉 Constraint is one of the subtype constraints that can be applied
to the type of the elements of the parent type, i.e. the type after the
keywords SEQUENCE OF or SET OF in the parent type. It is written in
round brackets.

13.9 Constraints on SEQUENCE, SET or CHOICE com-
ponents

13.9.1 User’s Guide

For the SEQUENCE and SET types that include several components of gen-
erally very different types, we need to constraint the type of each com-
ponent: it is the constraint WITH COMPONENTS (with a final “S”).

Let the type:

Quadruple ::= SEQUENCE {

alpha ENUMERATED {state1, state2, state3},

beta IA5String OPTIONAL,

gamma SEQUENCE OF INTEGER,

delta BOOLEAN DEFAULT TRUE }

278 ASN.1 – Communication between Heterogeneous Systems

We can derive from it the following type where the component alpha

systematically equals state1 and the component gamma always has five
elements9:

Quadruple1 ::=

Quadruple (WITH COMPONENTS { ...,

alpha (state1),

gamma (SIZE (5)) })

This type is strictly equivalent to:

Quadruple1 ::= SEQUENCE {

alpha ENUMERATED {state1, state2, state3} (state1),

beta IA5String OPTIONAL,

gamma SEQUENCE SIZE (5) OF INTEGER,

delta BOOLEAN DEFAULT TRUE }

The symbol “...” means that we constrain some of the components
of the SEQUENCE (or SET) type and do not change those which do not
explicitly appear in the constraint. The symbol “...” should not be
confused with the extension marker already presented in Section 12.9
on page 244 that we will discuss on page 291 when describing extensible
constraints. A constraint WITH COMPONENTS may apply to an extensible
(or extended) type as well.

For the SEQUENCE type, the components should be in the same order
as in the type. For the SET type, the order may not be respected.

The constraint WITH COMPONENTS can also constrain, by means of
the keywords PRESENT and ABSENT, the components marked OPTIONAL

(DEFAULT respectively) to be mandatorily present or absent (only present
respectively) when transmitted. Combining the subtype constraints, we
can refine a SEQUENCE (or SET) type imported from another module:

Quadruple2 ::= Quadruple (WITH COMPONENTS {

alpha (state1),

beta (SIZE (5|12)) PRESENT,

gamma (SIZE (5)),

delta OPTIONAL })

We have not used the “...” symbol since all the components of
the SEQUENCE type are specified in the WITH COMPONENTS constraint. In

9Note that contrary to the keywords WITH COMPONENT, followed by round brackets
that delimit another constraint, the keywords WITH COMPONENTS are followed by curly
brackets to recall the structure of the SEQUENCE (or SET) type whose components are
being constrained.

13 - Subtype constraints 279

the component delta, the OPTIONAL marker means that no constraint
applies to it (i.e. it keeps its default value). If only the presence of
some particular components should be imposed (without using any other
subtype constraints), the keywords PRESENT and ABSENT can be omitted,
and the identifiers to be transmitted can be listed:

Quadruple3 ::=

Quadruple (WITH COMPONENTS {alpha, beta, gamma})
Thus, the type Quadruple3 is equivalent to:

Quadruple3 ::=

SEQUENCE { alpha ENUMERATED {state1, state2, state3},

beta IA5String,

gamma SEQUENCE OF INTEGER }

This form of subtyping is particularly interesting when defining ‘con-
formance sets’ derived from a common type where some of its possibili-
ties are limited. When testing a protocol (see Section 23.2 on page 480),
we can make sure that in some specific configurations of the communi-
cating application or systems, its behavior conforms to what is expected
from the specification.

We will see in Part III on page 391 that this subtype constraint does
not impact the BER or PER encoding of a SEQUENCE or SET value; it
is therefore an interesting means of constraining a too general abstract
syntax while preserving its encoding properties (same tags for the BER,
same component presence bit-field for the PER).

The constraint WITH COMPONENTS may also apply to the types de-
fined with a SEQUENCE type, i.e. REAL, EMBEDDED PDV, EXTERNAL, CHARACTER
STRING10 and INSTANCE OF.

For example, it is recommended to make system interwork more
easily by applying this constraint to the REAL type11:

ConstrainedReal ::=

REAL (WITH COMPONENTS { mantissa (-65535..65536),

base (2),

exponent (-127..128) })

10The constraint WITH COMPONENTS is also used in the standardized formal defini-
tion of the negotiation context switching types EMBEDDED PDV, EXTERNAL and CHARACTER

STRING as we shall see in Chapter 14.
11Such a subtyping for the three components of a REAL type has only been possible

since 1994, when it was formally defined with a SEQUENCE type.

280 ASN.1 – Communication between Heterogeneous Systems

The following is a more complex example from the CMIP standard
[ISO9596-1] where the PDU ROIV-m-Linked-Reply of the ROSE proto-
col [ISO9072-2] is constrained:

ROIV-m-Linked-Reply-Action ::=

ROIV-m-Linked-Reply (WITH COMPONENTS {

invokedID PRESENT,

linked-ID PRESENT,

operation-value (m-Linked-Reply),

argument (INCLUDES LinkedReplyArgument

(WITH COMPONENTS {

getResult ABSENT,

getListError ABSENT,

setResult ABSENT,

setListError ABSENT,

actionResult PRESENT,

processingFailure PRESENT,

deleteResult ABSENT,

actionError PRESENT,

deleteError ABSENT }))})

The constraint WITH COMPONENTS may also be applied to a CHOICE

type. In this case, it forbids the selection of some alternatives or imposes
the choice of one of them (when a WITH COMPONENTS constraint is applied
to a CHOICE type, it can obviously include only one PRESENT marker).

Let us consider the type :

Choice ::= CHOICE { a A,

b B,

c C,

d D }

and the subtypes:

ChoiceCD ::=

Choice (WITH COMPONENTS {..., a ABSENT, b ABSENT})
ChoiceA1 ::= Choice (WITH COMPONENTS {..., a PRESENT})
ChoiceA2 ::= Choice (WITH COMPONENTS {a PRESENT})
ChoiceBCD ::= Choice (WITH COMPONENTS {a ABSENT, b, c})

For ChoiceCD, only the c and d alternatives can be selected. For ChoiceA1
and ChoiceA2, alternative a is necessarily selected. For ChoiceBCD, alter-
native a cannot be selected but no constraint applies to the other al-
ternatives (hence, alternative d can be selected): note that the absence
of keyword PRESENT or ABSENT has no default meaning when the WITH

COMPONENTS constraint applies to the CHOICE type.

13 - Subtype constraints 281

As seen in the examples throughout this section, the same constraint
may have several possible expressions depending on whether the presence
markers are omitted.

13.9.2 Reference Manual

InnerTypeConstraints →
WITH COMPONENT SingleTypeConstraint
| WITH COMPONENTS MultipleTypeConstraints

〈1〉 The constraint WITH COMPONENTS is allowed only if the parent type
is SEQUENCE, SET, CHOICE, REAL (see rule 〈2〉 on page 144), EXTERNAL (see
Figure 14.1 on page 301), EMBEDDED PDV (see Figure 14.3 on page 305),
CHARACTER STRING (see Figure 14.4 on page 307) or INSTANCE OF (see
rule 〈4〉 on page 358).
〈2〉 An extensible type constrained by WITH COMPONENTS remains exten-
sible.
〈3〉 The production SingleTypeConstraint that applies to the types
SEQUENCE OF and SET OF is presented in Section 13.8.2 on page 277.

MultipleTypeConstraints → FullSpecification
| PartialSpecification

〈4〉 A value of the parent type appears in the subtype only if it complies
with the constraints associated with every one of the components listed
in MultipleTypeConstraints.

FullSpecification → “{” TypeConstraints “}”

〈5〉 If FullSpecification applies to a SEQUENCE or SET type, all the manda-
tory components of the type must appear in the FullSpecification.
〈6〉 If FullSpecification applies to a SEQUENCE or SET type, all the compo-
nents marked OPTIONAL in the type that are not mentioned in FullSpeci-
fication are considered to be marked ABSENT by default.

PartialSpecification → “{” “...” “,” TypeConstraints “}”

〈7〉 The symbol “...” is not an extension marker here (see Section 12.9
on page 244).
〈8〉 If PartialSpecification is used, no constraint is implied on the un-
mentioned components.

TypeConstraints → NamedConstraint “,” · · ·+

282 ASN.1 – Communication between Heterogeneous Systems

〈9〉 There may be only one NamedConstraint per component of the par-
ent type, that is to say that every component can be constrained only
once inside the same MultipleTypeConstraints.

NamedConstraint → identifier ComponentConstraint

〈10〉 identifier must be one of the identifiers appearing in the parent type.
〈11〉 If the parent type is SEQUENCE, the identifiers must be listed in the
same order as in SequenceType.

ComponentConstraint → ValueConstraint PresenceConstraint

ValueConstraint → Constraint
| ε

〈12〉 Constraint must be a subtype constraint valid for the type of the
constrained component.
〈13〉 In the definition of a value of the constrained structured type, the
component constrained by ValueConstraint must have a value that com-
plies with this constraint.

PresenceConstraint → PRESENT

| ABSENT

| OPTIONAL

| ε
〈14〉 When the parent type is SET or SEQUENCE, a component marked
OPTIONAL in the parent type can be constrained PRESENT (in this case,
the constraint is satisfied if the corresponding element appears in the
value), ABSENT (in this case, the constraint is satisfied if the correspond-
ing element is not present in the value) or OPTIONAL.
〈15〉 When the parent type is SET or SEQUENCE, a component marked
DEFAULT in the parent type can be constrained PRESENT or OPTIONAL.
〈16〉 A component marked DEFAULT cannot be constrained ABSENT be-
cause the application will necessarily receive a value from the decoder,
even if no value is actually transmitted.
〈17〉 When the parent type is CHOICE, a component can be constrained
ABSENT (in this case, the constraint is satisfied if this alternative is not
chosen) or PRESENT. There should be at most one PRESENT keyword in
MultipleTypeConstraints.
〈18〉 In a FullSpecification (i.e. without “...”), an empty PresenceCon-
straint is equivalent to a PRESENT constraint if the parent type is SET or
SEQUENCE and if the component is marked OPTIONAL in this parent type,
but has no default semantics in other cases.

13 - Subtype constraints 283

〈19〉 In a PartialSpecification (i.e. with “...”), an empty PresenceCon-
straint has no default semantics.
〈20〉 For the SET, SEQUENCE or CHOICE types, the components constrained
ABSENT cannot be present in a value definition, even if the type is exten-
sible.

13.10 Subtyping the content of an octet string

13.10.1 User’s Guide

Many protocol developers would like to have a simple means of embed-
ding data in the ASN.1 specification that could be encoded by rules
that would differ from those used for the global specification. Of course,
ASN.1 provides presentation context negociation types (introduced in
Chapter 14), but this may seem heavy-handed for what they intend to
do.

In the past, many specifiers have therefore turned to the type OCTET

STRING, associating free constraints by the keywords CONSTRAINED BY, as
in the CAMEL 03.78 protocol for GSM mobile phones, for instance) in
addition to comments where those very encoding rules were described.
Unfortunately, since these (informal) comments are not taken into ac-
count by compilers, they cannot generate procedure that would decode
embedded values “on the fly”.

The ASN.1 working group have therefore agreed to introduce a spe-
cific subtyping constraint to formalize this functionality. This con-
straint, introduced by the keywords CONTAINING and ENCODED BY, is the
subject of the technical corrigendum [ISO8824-3DTC2], which is now
circulating among the national bodies of ISO and ITU-T for vote.

For example, this new constraint would make it possible to define a
value of type, say MyType encoded in PER, in a BER stream:

MoreCompact ::= OCTET STRING (CONTAINING MyType ENCODED BY

{joint-iso-itu-t asn1 packed-encoding(3)

basic(0) unaligned(1)})

MyType ::= SEQUENCE { -- -- }

An ASN.1 compiler would then generate a BER encoder that automat-
ically calls the PER encoder for the value of type MoreCompact (and
similarly for the decoders).

284 ASN.1 – Communication between Heterogeneous Systems

The object identifier that follow the keywords ENCODED BY may also
reference an ad-hoc encoding described with the new ECN encoding
notation (see Section 21.6 on page 459). If the clause ENCODED BY is
not used, the encoding rules are the same as the current module’s (the
CONTAINING may then embed in the current specification a PDU defined
in another ASN.1 specification).

For example, to indicate in the ASN.1 specification that values of
type Document must be encoded according to Acrobat PDF format, we
can write:

Document ::= OCTET STRING (ENCODED BY pdf)

pdf OBJECT IDENTIFIER ::= { -- OID pour le codage PDF -- }

The ASN.1 compiler may then generate a decoder that would automat-
ically launch the appropriate viewer (e.g. Acrobat Reader). Note that,
in this case, the keyword CONTAINING is not used since there exists no
ASN.1 type for describing the PDF format.

13.10.2 Reference Manual

ContentsConstraint → CONTAINING Type
| ENCODED BY Value
| CONTAINING Type ENCODED BY Value

〈1〉 The corrigendum to the ASN.1 standard [ISO8824-3DTC2] that
will introduce this new subtype constraint is now circulating among
the national bodies of ISO and ITU-T for vote.
〈2〉 This constraint can only apply to the types BIT STRING and OCTET

STRING.
〈3〉 When a type is constrained by ContentsConstraint, it cannot be
constrained (directly or indirectly) by any other subtype constraint.
〈4〉 Value must be a value of type OBJECT IDENTIFIER.
〈5〉 The type that is referenced after the keyword CONTAINING specifies
that the abstract value (a bit string or an octet string) is an encoding
of a value of that type.
〈6〉 The object identifier that is referenced after the keyword ENCODED

BY specifies that the abstract value (a bit or octet string) is the
encoding produced by the encoding rules identified by this object
identifier. When this object identifier is not provided (first alterna-
tive of the ContentsConstraint production), the encoding rules applied
to Type must be the same as those applied to the current ASN.1 module.

13 - Subtype constraints 285

13.11 Constraint combinations

13.11.1 User’s Guide

In all the examples given since the beginning of this chapter, every parent
type was followed by a single subtype constraint. We now describe how
we can build up intersections, unions and exclusions of constraints.

The simplest way of combining constraints is to specify them one
after the other after the parent type. In this case, the resulting type has
its values in the intersection12 of the set of values corresponding to each
constraint. Then, it is possible to write:

PhoneNumber ::=

NumericString (FROM ("0".."9"))(SIZE (10))

for the type of French telephone numbers or

Row ::= SEQUENCE OF INTEGER

CoordinateMatrix ::= SEQUENCE SIZE (6) OF

Row (SIZE (6))(WITH COMPONENT (-100..100))

for the type of square matrices of dimension 6 whose elements are inte-
gers between -100 and 100 (we may compare this type to its equivalent
defined on page 276), or else

TextBlock ::= SEQUENCE OF VisibleString

Address ::=

TextBlock (SIZE (3..6))(WITH COMPONENT (SIZE (1..32)))

for the addresses of 3 to 6 lines of 1 to 32 characters each (the first
SIZE constraint applies to the SEQUENCE OF type and the second to the
VisibleString type of each element).

We have already used the vertical bar “|” to produce enumerations
of simple constraints (single value or value range) as in:

PushButtonDialSequence ::=

IA5String (FROM ("0".."9"|"*"|"#"))

12ASN.1:1990 imposed the set of values of a constraint to be a subset of the set of
values of the parent type, which involves that the definitions:

T1 ::= INTEGER (1..10) or T2 ::= INTEGER (1..10)(5..15)

U ::= T1(5..15)

were not semantically correct since the interval [5;15] is not included in the interval
[1;10] (see also rule 〈3〉 on page 259). Since 1994, the types U and T2 have been
semantically equivalent to:

T ::= INTEGER (5..10)

286 ASN.1 – Communication between Heterogeneous Systems

C1 UNION C2

C1 C2

C1

C2

C1 INTERSECTION C2

C1 Parent type

C2

C1 EXCEPT C2

C1

ALL EXCEPT C1

Figure 13.3: Set operators (on each diagram, the resulting set is in full
line)

Since 1994, set operators have been available for combining subtype con-
straints. These operators, whose principle is exposed by Venn’s diagrams
on Figure 13.3, are:

• “C1 UNION C2” or “C1 | C2” gives the union of the set of values of
constraint C1 and that of constraint C2 (i.e. the set of the values
that belong to one of the two sets at least);

• “C1 INTERSECTION C2” or “C1 ^ C2” whose result is the intersection
of the two sets of values (i.e. values that belong to both sets);

• “C1 EXCEPT C2” gives the complementary set of C2 in C1 (i.e. the
values of C1 that do not belong to C2) ;

• “ALL EXCEPT C1” gives the complementary set of C1 in the set of
values of the parent type (i.e. the values of the parent type that
do not belong to C1).

13 - Subtype constraints 287

In order to transmit Georges Perec’s Void 13 quoted on page ii at the
beginning of this book, one may use the type14:

Lipogramme ::=

IA5String (FROM (ALL EXCEPT ("e"|"E")))

The set operators can also be easily used to describe an alphabet as
a UniversalString subset:

SaudiName ::= BasicArabic (SIZE (1..100) ^ Level2)

ISO-10646-String ::= BMPString (FROM

(Level2 ^ (BasicLatin | HebrewExtended | Hiragana)))

KatakanaAndBasicLatin ::=

UniversalString (FROM (Katakana | BasicLatin))

As clearly shown in the previous example, a precedence is defined
on the operators (EXCEPT priority is higher than INTERSECTION, which
itself takes over UNION) and round brackets enables the user to change
this priority (and it is actually the only case where the ASN.1 grammar
allows to change the default priority using round brackets).

Concerning the combination of permitted alphabet constraints, one
should keep in mind that a type made indifferently of capital and small
letters:

CapitalAndSmall ::= IA5String (FROM ("A".."Z"|"a".."z"))

which contains a string like "Example", is not equivalent to a type made
exclusively of capital letters or exclusively of small letters:

CapitalOrSmall ::=

IA5String (FROM ("A".."Z")|FROM ("a".."z"))

which contains strings like "example" or "EXAMPLE". A quite similar ex-
ample can be found in the footnote 8 on page 269.

It is also possible (and certainly quite exotic indeed!) to write the
type of all strings made of one to four characters or of any number of
one of the three small letters “a”, “b” or “c”:

ExoticString ::= IA5String (SIZE (1..4)|FROM ("abc"))

that is to say, this type includes strings like "#", "jug", "" (the empty
string), "a", "aabbcc"... but not "jujube" or "cabal". Unlikely though
it might be, this example clearly shows that set operators potentially

13http://www.anatomy.usyd.edu.au/danny/book-reviews/h/A Void.html
14We suggest the reader try and practice constraint combinations designing an

ASN.1 type to transmit the textbook The Exeter Text by the same Georges Perec
(translated by Ian Monk), in which the only vowel used is ‘E’ !

http://www.anatomy.usyd.edu.au/danny/book-reviews/h/A_Void.html

288 ASN.1 – Communication between Heterogeneous Systems

apply to any subtype constraints; the problem lies in the interpretation
of the constraints in terms of sets of values to actually determine the
possible values of the resulting type. The designer should be aware,
however, that ASN.1 compilers are not likely to check for such excentric
constraint combinations. It is therefore recommended to combine these
as simply and straightforwardly as possible.

The Remote Operation Service Element standard ROSE
[ISO13712-1] defines the type:

InvokeId ::= CHOICE { present INTEGER,

absent NULL }

which is re-used and constrained in the DAP protocol of the directory
[X.519]:

DAP-InvokeIdSet ::= InvokeId (ALL EXCEPT absent:NULL)

where the absent alternative is excluded15.

Let us give a last example to convince the reader, if need be, of the
power and flexibility of set operators. Let the type:

Identifications ::= SEQUENCE {

idNumber NumericString (FROM (ALL EXCEPT " "))

(SIZE (6)) OPTIONAL,

telephone NumericString (FROM (ALL EXCEPT " "))

(SIZE (13)) OPTIONAL }

from which we can derive the type of a person, described by its name
and either its ID number or its telephone number (we cannot use both
identifications for the same person, but one of them should be present):

Person ::= SEQUENCE {

name PrintableString (SIZE (1..20)),

ident Identifications (WITH COMPONENTS {idNumber}

|WITH COMPONENTS {telephone}) }

13.11.2 Reference Manual

ElementSetSpecs → RootElementSetSpec
| RootElementSetSpec “,” “...”
| RootElementSetSpec “,” “...” “,”

AdditionalElementSetSpec

15This type is semantically equivalent to:

DAP-InvokeIdSet ::= InvokeId (WITH COMPONENTS {present PRESENT})

13 - Subtype constraints 289

〈1〉 The extension marker “...” is presented in Section 13.12.2 on
page 293.

RootElementSetSpec → ElementSetSpec
AdditionalElementSetSpec → ElementSetSpec

〈2〉 The set ElementSetSpecs consists of the union of the set of values
corresponding to RootElementSetSpec and the set corresponding to Ad-
ditionalElementSetSpec.
〈3〉 For RootElementSetSpec, and possibly for AdditionalElementSet-
Spec, the set operators (UNION, INTERSECTION, ALL and EXCEPT) are applied
on the extension root of each constraint ignoring the extension marker
“...” and the extensions.
〈4〉 The set ElementSetSpecs must contain at least one value. The result
must have at least one common value with the parent type, or with the
parent type’s root if it includes an extensible subtype constraint (see
also rule 〈17〉 on page 291). Nevertheless, intermediate results of the set
combination may be empty.
〈5〉 It is recommended not to write too complicated constraint combina-
tions since compilers may not check whether these are valid.
〈6〉 When a constraint combination using set operators has to be extensi-
ble, the extension marker “...” must be placed in the global constraint
at the outermost level (see rules 〈4〉 on page 268 and 〈5〉 on page 270).
〈7〉 If an exception marker “!” is necessary (see rule 〈3〉 on page 293),
it is introduced with the production Constraint (see on page 293).
〈8〉 When an exception marker “!” (see production ExceptionSpec
page 255) is present in a constraint by type inclusion (production Con-
tainedSubtype on page 263) used in a set combination, this is ignored
and is not inherited.

ElementSetSpec → Unions
| ALL Exclusions

〈9〉 The resulting set is made of all the values specified in Unions (1st
alternative) or of all the values of the parent type except those specified
in Exclusions (2nd alternative) (see Figure 13.3 on page 286).

Unions → Intersections
| UElems UnionMark Intersections

〈10〉 The resulting set is made of all the values specified in Intersections
(1st alternative), or of all those appearing at least once in UElems or in
Intersections (2nd alternative) (see Figure 13.3 on page 286).

290 ASN.1 – Communication between Heterogeneous Systems

UElems → Unions

UnionMark → “|”
| UNION

〈11〉 It is recommended to use, throughout a specification, either the
keywords UNION and INTERSECTION, nor the symbols “|” and “^”.

Intersections → IntersectionElements
| IElems IntersectionMark

IntersectionElements

〈12〉 The resulting set is made of all the values specified in Intersec-
tionElements (1st alternative), or of all those appearing at least once in
IElems and in IntersectionElements (2nd alternative) (see Figure 13.3
on page 286).

IElems → Intersections

IntersectionMark → “^”
| INTERSECTION

IntersectionElements → Elements
| Elems Exclusions

〈13〉 The resulting set is made of all the values specified in Elements (1st
alternative), or of all those appearing in Elems but not in Exclusions
(2nd alternative) (see Figure 13.3 on page 286).

Elems → Elements

Exclusions → EXCEPT Elements

〈14〉 EXCEPT precedes over INTERSECTION and “^” which, themselves, take
precedence over UNION and “|”. Round brackets can be used to modify
the priority.
〈15〉 It must be ensured that the ‘negative operator’ EXCEPT, used jointly
with a recursive type, does not give an empty set of values (see rule 〈31〉
on page 335).

Elements → SubtypeElements
| ObjectSetElements
| “(” ElementSetSpec “)”

〈16〉 The production ObjectSetElements cannot be used when defining
subtype constraints; it is introduced in Section 15.5.2 on page 331.

13 - Subtype constraints 291

SubtypeElements → SingleValue | ContainedSubtype
| ValueRange | PermittedAlphabet
| SizeConstraint | TypeConstraint
| InnerTypeConstraints

| PatternConstraint

〈17〉 Before applying set operators (according to rule 〈3〉 on page 289), it
must be ensured that every constraint (SubtypeElements) appearing in
the combination ElementSetSpecs has at least one common value with
the parent type.

13.12 Constraint extensibility

13.12.1 User’s Guide

The extensibility question has already been exposed in Section 10.4 on
page 135 for the ENUMERATED type and in Section 12.9 on page 244 for
the SEQUENCE, SET and CHOICE types, so we will not discuss it here any
further since it applies likewise16 on extensible subtype constraints.

A constraint is extensible if it contains an extension marker “...”
as in:

A ::= INTEGER (0..10, ...)

In a new version of our specification, we may write:

A ::= INTEGER (0..10, ..., 12)

Note that contrary to the constructed types SEQUENCE, SET and
CHOICE, there is neither a second extension marker, nor version double
square brackets “[[” and “]]” to indicate the different possible exten-
sions. Moreover, if the EXTENSIBILITY IMPLIED clause is present in the
module header, it does not alter the subtype constraints.

The set of (abstract) values of a subtype defined with an extensible
constraint is simply given by the union of the set of values of the exten-
sion root and the set of values of the various extension additions. The
extended A type above contains the integers from 0 to 10 and the integer
12 as the notation clearly indicates. Even when the subtype constraints

16However, if a type includes an extensible subtype constraint, it is its set of values
that is extensible but not the structure of its values whereas if a constructed type
(SEQUENCE, for example) is extensible, its own structure may be modified by adding
new components.

292 ASN.1 – Communication between Heterogeneous Systems

are complex, they can be interpreted using the associated set of values.
But we will see in Part III that a BER or PER encoding procedure
for the type INTEGER (0..10, ...) knows how to encode the ‘unknown’
extension 12.

If the extension marker appears in a size constraint as in:

S ::= IA5String (SIZE (1..10, ...))

it means the decoder should expect string that may have more than 10
characters.

Generally speaking, it is recommended for that matter to insert an
exception marker “!” (presented on page 247) in all the extensible
constraints to inform clearly the receiving application about values that
would not conform to the extension root of the constraint:

E ::= INTEGER (1..10, ...!Exception:too-large-integer)

Exception ::= ENUMERATED {too-large-integer, ...}
This exception marker proves particularly useful when it applies to

the size constraint, as for the previously defined type S for which the re-
ceiving application may not have dimensioned the memory space prop-
erly for receiving strings longer than 10 characters.

As discussed more thoroughly in Section 17.3 on page 389 when we
come to parameterization, if a subtype constraint includes a parameter of
the abstract syntax, then this is implicitly extensible since every instance
of the parameter (i.e. the value to be affected to it) should modify the
set of values of the constraint. In this case, it is recommended to use an
exception marker:

ImplementedUnivStr{UniversalString:Level} ::=

UniversalString (FROM ((Level UNION BasicLatin))

!characterSet-problem)

characterSet-problem INTEGER ::= 4

Finally, if a type piles up subtype constraints, several of which have
an exception marker, it is the outermost exception that will be triggered:

T ::= INTEGER (0..10, ...!10)

U ::= T (2..6, ...!6)

If a value of type U is received outside the interval 2..6, the exception 6

is triggered.

13 - Subtype constraints 293

Likewise, for the type :

ImplementedUnivStgLevel1{UniversalString:ImplementedSubset}

::= UniversalString (ImplementedUnivStr{{Level1}}

INTERSECTION ImplementedSubset, ...!level1-problem)

level1-problem INTEGER ::= 5

it is the outermost exception level1-problem (and not
characterSet-problem) that is triggered.

We will also see in Section 13.13 that it is recommended to add
an exception marker in case a user-defined constraint (introduced by
CONSTRAINED BY) is used.

13.12.2 Reference Manual

Constraint → “(” ConstraintSpec ExceptionSpec “)”

〈1〉 The production ExceptionSpec is presented on page 255.
〈2〉 When a set combination of constraints should be extensible, the ex-
tension marker “...” must be placed in the outermost constraint (see
the rules 〈4〉 on page 268, 〈5〉 on page 270 and 〈20〉 on page 334).
〈3〉 Unless it is used jointly with an extension marker “...”, the excep-
tion marker ExceptionSpec can appear in a subtype constraint only if
ConstraintSpec includes a formal parameter DummyReference (see on
page 386) or if ConstraintSpec is an UserDefinedConstraint introduced
by CONSTRAINED BY (see on page 296).
〈4〉 If a type is constrained several times with extensible constraints or if
a type with an extensible constraint is referenced as a ContainedSubtype
(see on page 263) in another extensible constraint, the exception marker
that should be associated with the type is the marker of the outer-
most constraint. For example, if T ::= INTEGER(0..5, ...!5) and U ::=

INTEGER(T|10..15, ...!15, 20..25) then the exception associated with
U should be 15 (and not 5).

ConstraintSpec → ElementSetSpecs
| GeneralConstraint

〈5〉 When an exception marker “!” (see production ExceptionSpec on
page 255) appears in a constraint by type inclusion (see production
ContainedSubtype on page 263) used in a set combination (i.e. using the
UNION, INTERSECTION, ALL and EXCEPT operators), this is ignored and is
not inherited.

294 ASN.1 – Communication between Heterogeneous Systems

ElementSetSpecs → RootElementSetSpec
| RootElementSetSpec “,” “...”
| RootElementSetSpec “,” “...” “,”

AdditionalElementSetSpec

〈6〉 The extension marker “...” indicates that the reception of addi-
tional elements or their absence when comparing with those defined in
the specification must not be treated as an error when decoding. The
extension root appears before the extension marker “...”. The exten-
sions appear after this marker.
〈7〉 When producing a new version of the module, the extension insertion
point is after the extension marker “...”, at the end of ElementSetSpecs.
〈8〉 Contrary to extensions in CHOICE, SEQUENCE and SET types, the ver-
sion double square brackets “[[” and “]]” together with the second
extension marker “...” are not allowed in ElementSetSpecs, nor is El-
ementSetSpecs extensible by default if the module contains the clause
EXTENSIBILITY IMPLIED in its header.
〈9〉 The rules 〈7〉, 〈8〉 and 〈9〉 on page 259 apply to extension markers
in subtype constraints.

13.13 User-defined constraint

13.13.1 User’s Guide

Though very powerful, the ASN.1 subtyping mechanism cannot always
formally represent all the constraints that the specifier may want to
indicate in the module. Since 1994, Part 3 of the ASN.1 standard
[ISO8824-3] has defined the notion of user-defined constraint.

Introduced by the keywords CONSTRAINED BY, it can be seen as a spe-
cial kind of comments even though it may induce particular treatments
for encoding or decoding. In the ASN.1/C++ interface [TMF96] for ex-
ample, a function designed by the programmer can be invoked just before
encoding a value of a type that has a user-defined constraint and just
after decoding it. This function can check that the informal constraints
are respected but operations on the data may also be carried out.

This form of constraint can sometimes stand for some semantic links
that were formerly (not formally) defined with macros (presented in
Chapter 16). It can also indicate some complex constraint between
components of a SEQUENCE or SET type, for example, whereas these used

13 - Subtype constraints 295

to be defined in comments. There certainly are still comments17 after
the CONSTRAINED BY clause, but the latter can require the compiler to
insert a call to a user-defined function in the encoder or decoder body
together with the sketch of this function in the generated file.

The following type comes from the Presentation layer protocol
[ISO8823-1]:

PDV-List ::= SEQUENCE {

transfer-syntax-name Transfer-syntax-name OPTIONAL,

presentation-context-identifier

Presentation-context-identifier,

presentation-data-values CHOICE {

single-ASN1-type [0] ABSTRACT-SYNTAX.&Type

(CONSTRAINED BY {-- Type corresponding --

-- to presentation-context-identifier --}),

octet-aligned [1] IMPLICIT OCTET STRING,

arbitrary [2] IMPLICIT BIT STRING } }

and another from the remote operation service element ROSE
[ISO13712-1] (in which the exception marker should be noted):

Reject ::= SEQUENCE {

invokeId InvokeId,

problem CHOICE {

general [0] GeneralProblem,

invoke [1] InvokeProblem,

returnResult [2] ReturnResultProblem,

returnError [3] ReturnErrorProblem }}

(CONSTRAINED BY {-- must conform to the above --

-- definition --} ! RejectProblem:general-mistypedPDU)

The user-defined constraint very often depends on parameters, in
which case these are indicated between the curly brackets of the
CONSTRAINED BY clause. Any category of (a possibly governed) parameter
is allowed; we will come back to it in Chapter 17. Nonetheless, here is
an example extracted from the ASN.1 standard where the user-defined
constraint is the result of the encryption of a value whose type cannot
be known beforehand, and which, therefore, should be parameterized:

Encrypted{TypeToBeEnciphered} ::= BIT STRING (CONSTRAINED

BY {-- must be the result of the encipherment --

-- of some BER-encoded value of --

TypeToBeEnciphered} !Error:securityViolation)

Error ::= ENUMERATED {securityViolation}

17Generally, compilers ignore them right from the scanning stage [ASU86].

296 ASN.1 – Communication between Heterogeneous Systems

This example also shows that a user-defined constraint generally goes
along with an extension marker “!” to lift the errors up to the applica-
tion.

13.13.2 Reference Manual

UserDefinedConstraint → CONSTRAINED BY

“{” UserDefinedConstraintParameter “,” · · ·∗ “}”

〈1〉 Comments (nested in double dashes “--”) can be inserted in the
UserDefinedConstraintParameter list to precise their meaning. These
can obviously not be exploited by tools.
〈2〉 A user-defined constraint can be seen as a special kind of comments
that cannot be treated automatically. It can be used, however, by an
ASN.1 tool (a compiler, for example) to ask the user to check the con-
straint manually or force the encoder or decoder to call a test function
provided by the programmer.

UserDefinedConstraintParameter 18 →
Governor “:” Value
| Governor “:” ValueSet
| Governor “:” Object
| Governor “:” ObjectSet
| Type
| DefinedObjectClass

〈3〉 The governor and the governed parameter must conform to the
compatibility rules of ASN.1 semantic model defined in Section 9.4 on
page 121.
〈4〉 Value, ValueSet, Object, ObjectSet, Type and DefinedObjectClass
may (but need not) be ActualParameters in the ParameterList (see on
page 385) of the ParameterizedAssignment that is being defined. In this
case, the governor, when present, must appear both in the ParameterList
of the current type assignment and in the UserDefinedConstraintParam-
eter list of the user-defined constraint.
〈5〉 The Governor of a Value or ValueSet must be a type.
〈6〉 The Governor of an information object or an information object set
must be a reference to an information object class.

Governor → Type
| DefinedObjectClass

18This grammar production has been slightly changed by [ISO8824-3DTC1].

Chapter 14

Presentation context
switching types

Contents

14.1 The EXTERNAL type . 298

14.2 The EMBEDDED PDV type 302

14.3 The CHARACTER STRING type 306

Ambiguity, however, is often related to a
lack of linguistic or ‘situational’ context [...].
But in order to build up its system upon a
priori definitions and combination rules, the
object which is dealt with should be like that
of the mathematician: self-referencial.

Claude Hagège, Generative grammar.

We now introduce three types very different from those we have dealt
with so far. By changing the presentation context1 (6th layer of the
OSI model), they enable the user to embed in a data flow values that
may not necessarily conform to an abstract syntax specified in ASN.1
or be encoded according to the same transfer syntax as the one used for
transmitting the PDV (the highest-level value) of our specification. This

1A presentation context is the association of an abstract syntax with a transfer
syntax.

298 ASN.1 – Communication between Heterogeneous Systems

new abstract and/or transfer syntax(es) can be dynamically negotiated
between two communicating applications.

These types are employed for specifying relay systems such as an e-
mail application that would relay an message with a presentation context
identical to the one used by the sender, or a file system (equivalent to the
Unix file transfer protocol ftp) that would provide a file with the same
presentation context as used when downloading it from the database.
We shall see that one of them makes it possible to embed character
strings that do not conform to any of the numerous ASN.1 character
strings.

In order to start this chapter on fairly firm ground, we suggest the
reader to go back over Section 3.2 on page 20 (and particularly on Fig-
ure 3.2 on page 22) where we presented the concept of negotiation on
the Presentation layer of the OSI model. In footnote 12 on page 15,
we have mentioned the frequent confusion between transfer syntax and
encoding rules: this confusion will be pursued throughout this chapter
for the sake of the discourse.

14.1 The EXTERNAL type

14.1.1 User’s Guide

EXTERNAL is historically the first type that enabled the user to change
the presentation context. As it self-explicitly indicates, it models values
that are external to the current specification in the sense that they are
defined with another abstract syntax (specified in ASN.1 or any other
abstract notation) or encoded with a transfer syntax different from that
of the active presentation context.

In order to encode these embedded values properly, we must have a
means of denoting their own abstract and/or transfer syntax(es). It is
down to the encoder and the decoder to take into account the switch
of active context. Indeed, the Presentation layer protocol may be able
to negotiate a whole set of defined contexts, but the actual selection of
the active context is operated locally, when emitting for the encoder and
receiving for the decoder.

14 - Presentation context switching types 299

Until 1994, a value of EXTERNAL type conformed to the following
structured type:

EXTERNAL ::= [UNIVERSAL 8] IMPLICIT SEQUENCE {

direct-reference OBJECT IDENTIFIER OPTIONAL,

indirect-reference INTEGER OPTIONAL,

data-value-descriptor ObjectDescriptor OPTIONAL,

encoding CHOICE {

single-ASN1-type [0] ANY,

octet-aligned [1] IMPLICIT OCTET STRING,

arbitrary [2] IMPLICIT BIT STRING }}

The component direct-reference identifies the data type syntax
(it is not necessarily an abstract syntax described in ASN.1); in this
case, we assume the transfer yntax has been agreed on between the two
applications and is therefore not negotiated on the Presentation layer.

indirect-reference is an integer that references one of the presen-
tation contexts (the association of an abstract syntax with a transfer
syntax) that were negotiated. This indirect reference does not guaran-
tee that the presentation context is preserved when going through a relay
application because the integer that identifies the presentation context
can change between connections.

At least one of the two previous identifiers is compulsory.

The component data-value-descriptor is a string that describes the
abstract syntax of the data, but is hardly ever used in practice.

For embedding the value in the encoding component, we choose the
alternative:

• single-ASN1-type if the abstract syntax is an ASN.1 type and if
the data is encoded with the same transfer syntax as the active
presentation context;

• octet-aligned for a value that encodes in a whole number of octets,
if the abstract syntax is not described in ASN.1 or if the actual
transfer syntax differs from the specification’s transfer syntax;

• arbitrary otherwise.

The type EXTERNAL is used, for example, in the PDUs of the Asso-
cation Control Service Element (ACSE, [ISO8650-1]) invoked by all the
applications that use the OSI stack:

Association-information ::= SEQUENCE OF EXTERNAL

300 ASN.1 – Communication between Heterogeneous Systems

This information necessarily belongs to another abstract syntax: the
very one for which the association was required. And if the data type
has been defined outside the ACSE standard, the value is embedded
via an EXTERNAL type. Other uses of the EXTERNAL type can be found in
the definition of the X.400 e-mail content (see Section 7.2 on page 81)
or the description of the nodes for FTAM file transfer (see on page 81)
in particular.

Since 19942, the EXTERNAL type is formally defined with the structured
type of Figure 14.1 on the next page.

This definition preserves the encoding compatibility with the type
in the previous version (1990). Indeed, the structured type is used to
denote the abstract value definition and clarify the components’ combi-
nations, but the encoding rules of the EXTERNAL will not be necessarily
referencing the associated type.

The alternative syntax identifies both the abstract syntax and the
transfer syntax (i.e. the encoding rules, see footnote 12 on page 15) with
a single object identifier, whereas presentation-context-id identifies
one of the presentation contexts that were negotiated. The alternative
context-negotiation (consisting of the components direct-reference

and indirect-reference of the 1990 version type) is used when the ab-
stract syntax negotiation is taking place: the object identifier of the
transfer syntax is then added to the presentation context identifier that
is being negotiated. These last two alternatives apply only in an OSI
environment3.

Note that the only way to indicate the embedded value as an octet
string actually groups together (in terms of encoding) the three alterna-
tives encoding of the 1990 version.

Unfortunately, when the EXTERNAL type has been designed, all the
Presentation layer principles were not fully grasped and the very notion
of embedded value was a bit unusual. Because of mistakes in its design,
the use of the EXTERNAL type has been strongly unrecommended since
the 1994 edition of ASN.1. The latter proposes to replace it, among

2The definition that is given here can be found precisely in the ASN.1:1997 stan-
dard because the ASN.1:1994 standard was subject to some amendments on this
point.

3As a result, these cannot be used in a switching environment [ETSI60], for ex-
ample.

14 - Presentation context switching types 301

EXTERNAL ::= [UNIVERSAL 8] IMPLICIT SEQUENCE {
identification CHOICE {

syntaxb OBJECT IDENTIFIER,

presentation-context-idc INTEGER,

context-negotiationd SEQUENCE {
presentation-context-id INTEGER,

transfer-syntax OBJECT IDENTIFIER } },
data-value-descriptor ObjectDescriptor OPTIONAL,

data-valueg OCTET STRING }
cThe footnotes b, c and d are the same as those in Figure 14.3

on page 305.
gThe italic font denotes the words that have changed when com-

paring with the SEQUENCE type associated with the types EMBEDDED PDV

(see Figure 14.3 on page 305) and CHARACTER STRING (see Figure 14.4
on page 307).

Figure 14.1: SEQUENCE type associated with the EXTERNAL type (defined
in an automatic-tagging environment)

others, with the EMBEDDED PDV type, which is described in the next sec-
tion, or with the INSTANCE OF type (see Section 15.9.1 on page 357).This
updating, of course, does not ensure the encoding compatibility except
if we use a type such as ‘CHOICE { external EXTERNAL, embedded-pdv

EMBEDDED PDV }’ in a BER encoding context.

14.1.2 Reference Manual

Type notation

ExternalType → EXTERNAL

〈1〉 A value of type EXTERNAL represents three items of information: the
encoding of a single value (which is not necessarily of an ASN.1 type),
an abstract syntax that contains this value and the transfer syntax (i.e.
the encoding rules, see footnote 12 on page 15) used for this value.
〈2〉 This type has tag no. 8 of class UNIVERSAL. It has the same tag as
the type INSTANCE OF (see on page 358).
〈3〉 The type EXTERNAL is defined (in an automatic-tagging environment)
by the structured type given in Figure 14.1.
〈4〉 The type EXTERNAL can be subtyped according to its associated type
defined in Figure 14.1, i.e. by a single value (see production SingleValue
on page 261) and by constraint on its components (see production
InnerTypeConstraints on page 277).

302 ASN.1 – Communication between Heterogeneous Systems

Sender Relay Receiver

c(v),AS1,TS1 c(v),AS1,TS1

Figure 14.2: Abstract and transfer syntax identifiers hand-over when
relaying an embedded value

〈5〉 Instead of the EXTERNAL type, it is recommended to use the INSTANCE

OF type, a subtyped EXTERNAL, the EMBEDDED PDV type or the type CHOICE

{external EXTERNAL, embedded-pdv EMBEDDED PDV}.
〈6〉 If there is no negotiation on the presentation layer, it is still possible
to use an EXTERNAL type as explained in [ISO8824-2, annex C].

Value notation

ExternalValue → SequenceValue

〈7〉 The SequenceValue must conform to the SEQUENCE type associated
with the EXTERNAL type as described in Figure 14.1 on the page before.

14.2 The EMBEDDED PDV type

14.2.1 User’s Guide

The type EMBEDDED PDV was introduced in 1994 to make up for historical
mistakes of the EXTERNAL type. Unfortunately, instead of proposing a
light version more specifically adapted for communicating applications
based on message storing or relay systems, numerous alternatives were
added to the EXTERNAL type in order to replace it.

If such applications store or relay embedded messages, the abstract
syntax and transfer syntax object identifiers should be kept to for-
ward these messages in the same format as that was received (see Fig-
ure 14.2). Unfortunately no alternative of the choice ‘identification’
of the EXTERNAL type can declare two object identifiers and the alter-
native presentation-context-id that identifies the presentation context
〈abstract syntax, transfer syntax〉 is not appropriate since it does not
guarantee that the presentation context identifier is the same for the re-
ception connection and the re-emission connection. Ensuring that these
two object identifiers are retained has motivated the addition of the
alternative syntaxes to the type EMBEDDED PDV.

14 - Presentation context switching types 303

From the abstract syntax viewpoint, a value of type EMBEDDED PDV

should therefore conform to the structured type described in Figure 14.3
on page 305.

The alternatives syntax, presentation-context-id and
context-negotiation are the same as those of EXTERNAL type. The
alternative syntaxes references the abstract and transfer syntaxes by
their respective object identifier; this is the main difference with the
type EXTERNAL.

The alternative transfer-syntax references only the transfer syn-
tax (i.e. the encoding rules, see footnote 12 on page 15) by its object
identifier. It proves particularly useful in case of data compression or
encryption because it can state out clearly the method applied to the
abstract syntax.

Finally, the alternative fixed is used if the abstract and transfer
syntaxes resulted from a negotiation between the two applications; in
this case the encoding is more compact4 since transmitting the syntaxes’
object identifiers with each embedded value becomes unnecessary. This
alternative will be used in case the ASN.1 type of the embedded data is
defined in another specification (this has obviously nothing to do with
a type imported in the current specification).

For a more detailed description of the functionalities offered by the
EMBEDDED PDV, the reader may refer to [Lar96].

All the alternatives and components of the EMBEDDED PDV type can be
subtyped using the WITH COMPONENTS constraint discussed in Section 13.9
on page 277. In order to keep only the alternative syntaxes that consti-
tutes the difference between the types EMBEDDED PDV and EXTERNAL, we
write:

EMBEDDED PDV (WITH COMPONENTS {

...,

identification (WITH COMPONENTS {syntaxes}) })

One can come across a particular use of the OCTET STRING type in
some protocols (ETSI specifications or Internet RFC, for example) that
are specified in ASN.1 and make use of another protocol also specified

4The first documents on the EMBEDDED PDV type gave two kinds of encoding (see
footnote 13 on page 412): the complete encoding was used for the first transmission of
an embedded value and featured the abstract syntax and transfer syntax object iden-
tifiers. The ‘elementary’ encoding was used for the following transmissions where the
first octet stored the presentation context identifier. These two forms were eventually
not standardized.

304 ASN.1 – Communication between Heterogeneous Systems

in ASN.1: the former collects the second protocol’s PDV and embeds
it in its own PDV as an octet string. Moreover the embedded PDV is
not necessarily encoded with the same encoding rules as the embedding
PDV.

To solve such a demand (that is already provided by some compil-
ers), the ASN.1 working group has investigated the introduction of two
new subtype constraints called CONTAINING and ENCODED BY that can be
applied on the OCTET STRING type (see Section 13.10 on page 283) :

T ::= OCTET STRING (CONTAINING EmbeddedType

ENCODED BY oid)

14.2.2 Reference Manual

Type notation

EmbeddedPDVType → EMBEDDED PDV

〈1〉 The EMBEDDED PDV type makes it possible to use a specific encoding
for an abstract value while making the transfer syntax negotiation easier
on the Presentation layer. A value of type EMBEDDED PDV represents the
encoding of a single value (which is not necessarily an ASN.1 type), as
well as an abstract syntax that contain these values and the transfer
syntax (i.e. the encoding rules) used for separating this value from
other values of the same class. The set of values of this type includes
all the possible values of all the possible abstract syntaxes.
〈2〉 This type has tag no. 11 of class UNIVERSAL.
〈3〉 The type EMBEDDED PDV is defined (in an automatic-tagging environ-
ment) by the structured type given in Figure 14.3 on the next page.
〈4〉 This type can be subtyped according to its associated SEQUENCE

type defined in Figure 14.3 on the next page, i.e. by a single value
(see production SingleValue on page 261) and by constraint on its
components (see production InnerTypeConstraints on page 277).

Value notation

EmbeddedPDVValue → SequenceValue

〈5〉 The value SequenceValue must conform to the SEQUENCE type asso-
ciated with the EMBEDDED PDV defined in Figure 14.3 on the next page.

14 - Presentation context switching types 305

EMBEDDED PDV ::= [UNIVERSAL 11] IMPLICIT SEQUENCE {
identification CHOICE {

syntaxesa SEQUENCE {
abstract OBJECT IDENTIFIER,

transfer OBJECT IDENTIFIER },
syntaxb OBJECT IDENTIFIER,

presentation-context-idc INTEGER,

context-negotiationd SEQUENCE {
presentation-context-id INTEGER,

transfer-syntax OBJECT IDENTIFIER },
transfer-syntaxe OBJECT IDENTIFIER,

fixedf NULL },
data-valueg OCTET STRING }
aObject identifiers of the abstract syntax and transfer syntax (en-

coding rules).
bSingle object identifier for denoting the abstract syntax and en-

coding rules.
cIdentifier of a negotiated presentation context (i.e. pair of ab-

stract and transfer syntaxes, used only in an OSI environment).
dUsed in a presentation context negotiation that may appear ei-

ther at the beginning of an OSI connection or during this connection
if there was a change of context (only in an OSI environment).

eIn this case, the abstract syntax (for example, an indication that
it is an ASN.1 type) is assumed fixed by the application designers
and known by both the sender and the receiver.

fThe abstract syntax and encoding rules are known by the sender
and the receiver.

gThe italic font denotes the words that have changed when com-
paring with the SEQUENCE type associated with the types EXTERNAL

(see Figure 14.1 on page 301) and CHARACTER STRING (see Figure 14.4
on page 307).

Figure 14.3: SEQUENCE type associated with the EMBEDDED PDV type (de-
fined in an automatic-tagging environment)

306 ASN.1 – Communication between Heterogeneous Systems

14.3 The CHARACTER STRING type

14.3.1 User’s Guide

The CHARACTER STRING type is the concrete application of the EMBEDDED

PDV type to the special case of a character string. It prevents from
restricting a specification to one of the character string types of Chapter
11 and to their standardized encoding (BER or PER). The character
abstract syntax and the character transfer syntax 5 can be negotiated
using the Presentation layer’s standard mechanism as in Figure 3.2 on
page 22 (for cases where the transfer is unrelayed) or declared with the
embedded character string if the environment is appropriate (in this
case, the sender should consult a directory service like the one presented
in Section 7.3 on page 83 to know the transfer and abstract syntaxes
supported by the receiver).

A character abstract or transfer syntax can be defined by any or-
ganization entitled to allocate object identifiers in the world-wide regis-
tration tree (see Section 10.8 on page 153). As described on page 185,
the standard [ISO10646-1] defines an abstract syntax (and consequently
an object identifier) for every one of its subsets of characters and for all
combinations of these subsets. It defines also a few character transfer
syntaxes.

A recently standardized alphabet only needs to be allocated an object
identifier to be used in an ASN.1 specification by means of the CHARACTER

STRING type. To prevent from associating two object identifiers to a
character string, these can be indicated in a WITH COMPONENTS constraint
when they are constant:

My-string ::= CHARACTER STRING (WITH COMPONENTS {

...,

identification (WITH COMPONENTS {

syntaxes ({abstract my-OID-AS,

transfer my-OID-TS}) })})

The SEQUENCE type that is used for defining abstract values of type
CHARACTER STRING is equivalent to the EMBEDDED PDV type’s; it is described
in Figure 14.4 on the next page.

5A character abstract syntax is an abstract syntax that accepts only character
strings as values. An example of character transfer syntax is given in Table 11.3 on
page 191.

14 - Presentation context switching types 307

CHARACTER STRING ::= [UNIVERSAL 29] SEQUENCE {
identification CHOICE {

syntaxesa SEQUENCE {
abstract OBJECT IDENTIFIER,

transfer OBJECT IDENTIFIER },
syntaxb OBJECT IDENTIFIER,

presentation-context-idc INTEGER,

context-negotiationd SEQUENCE {
presentation-context-id INTEGER,

transfer-syntax OBJECT IDENTIFIER },
transfer-syntaxe OBJECT IDENTIFIER,

fixedf NULL },
string-valueg OCTET STRING }
aThe footnotes a to f are the same as those in Figure 14.3 on

page 305.
gThe italic font denotes the words that have changed when com-

paring with the SEQUENCE type associated with the EXTERNAL types
(see Figure 14.1 on page 301) and EMBEDDED PDV (see Figure 14.3 on
page 305).

Figure 14.4: SEQUENCE type associated with the CHARACTER STRING type
(defined in an automatic tagging environment)

14.3.2 Reference Manual

Type notation

UnrestrictedCharacterStringType → CHARACTER STRING

〈1〉 The possible values of the CHARACTER STRING type are all the possi-
ble strings of all the possible character abstract syntaxes. The abstract
syntax may belong to the presentation context set allocated in an in-
stance of communication or can be directly referenced when using the
CHARACTER STRING type.
〈2〉 This type has tag no. 29 of class UNIVERSAL.
〈3〉 The type CHARACTER STRING is defined (in an automatic tagging en-
vironment) by the structured type given in Figure 14.4.

〈4〉 This type can be subtyped according to its associated SEQUENCE

type (see Figure 14.4), i.e. by a single value (production SingleValue
on page 261) and by constraint on its components (production Inner-
TypeConstraints on page 277). The PermittedAlphabet constraint (see
on page 269) is not allowed. The standard also allows a size constraint
(production SizeConstraint on page 267) but does not mention the

308 ASN.1 – Communication between Heterogeneous Systems

measure; it is recommended not to use this constraint but wait for a
technical corrigendum that will remove this ambiguity (see also next
rule).
〈5〉 When applied to the CHARACTER STRING type, the size constraint
(production SizeConstraint on page 267) must limit the number of
characters (not of octets) of the embedded strings. But the definition
of the ‘character’ notion depends on the character abstract syntax.
Should these ambiguities be removed, limiting the number of octets
in the embedded strings remains possible with a constraint of the
form CHARACTER STRING (WITH COMPONENTS {..., string-value (SIZE

(1..50) -- in octets --)}).

Value notation

UnrestrictedCharacterStringValue → SequenceValue

〈6〉 The value SequenceValue must conform to the associated SEQUENCE

type defined in Figure 14.4 on the page before.

Chapter 15

Information object classes,
objects and object sets

Contents

15.1 Introduction to information object classes 310

15.2 Default syntax of information objects and classes . . . 312

15.3 User-friendly syntax . 323

15.4 Example: the classes ATTRIBUTE and MATCHING-RULE of
the X.500 recommendation 327

15.5 Value sets and information object sets 329

15.6 Accessing the information stored in objects and ob-
ject sets . 336

15.7 A simple case study of how to extract information
modeled by a class . 341

15.8 More complex examples of information extraction . . 352

15.9 The pre-defined TYPE-IDENTIFIER class and INSTANCE

OF type . 355

15.10 The pre-defined ABSTRACT-SYNTAX class 359

310 ASN.1 – Communication between Heterogeneous Systems

There is a further difficulty that deserves
attention. Wise men, if they try to speak
their language to the common herd instead
of its own, cannot possibly make them-
selves understood. There are a thousand
kinds of ideas which it is impossible to
translate into popular language. Concep-
tions that are too general and objects that
are too remote are equally out of its range [...].

Jean-Jacques Rousseau, The Social Contract.

In ASN.1, the concept of information object class is used to formally
represent properties uncovered by the notions of type and value in par-
ticular. These properties can very often be interpreted as semantic links
between types and values (among others). They allow the specifier to
leave open areas (gaps) in the specification while restricting how these
gaps should be filled. Even if the information objects are never en-
coded, they are nonetheless used by ASN.1 compilers when generating
the encoders and decoders.

The reader who may get confused between the information object
classes and the constructed types (or the information objects and the
abstract values) should think of the former as being of a higher con-
ceptual level; in other words, types and abstract values can be defined
without using information object classes but the definition of an infor-
mation object class must rely on types or values and even sometimes on
other information object classes, objects or object sets.

15.1 Introduction to information object classes

An information object class is, first of all, a class, in other words “a
group of people or things sharing common characteristics” (The Collins
Pocket). In ASN.1, these characteristics can reference a type, a value, a
value set, an information object or an information object set.

Imagine a class of computing functions or operations with four
fields1, given in Figure 15.1 on the next page: for every function, the

1The term ‘attribute’ is more common in the literature on object-oriented design,
but ASN.1 classes do not fit in this category.

15 - Information object classes, objects and object sets 311

Operation name

ASN.1 type of the argument:
ASN.1 type of the result : (NULL by default)
Error message list : { , , ... }
Identification code :

Figure 15.1: Description form of a remote application

first field contains the argument type, the second one the result type,
the third represents the set of error messages that may be returned and
the fourth an identification code.

To carry out a remote execution of one of these functions, a com-
municating application should send a sequence of two components2: the
identification code (to specify the function to be executed by the remote
application) and a value that conforms to the ASN.1 type of the argu-
ment. In return, the application receives a value that conforms to the
result type if the function execution was successful, and one of the spec-
ified error messages otherwise. We shall see that such a functioning is
very close to the Remote Operation Service Element ROSE [ISO13712-1]
and its information object class called OPERATION.

The information object classes appeared in the 1994 edition of the
ASN.1 standard [ISO8824-2]. They take up, in principle at least, the
notion of macros (see Chapter 16) and the ANY type with its DEFINED

BY clause (see Section 12.8 on page 241), which are no longer part of
the standard. They are used to ‘open’ a specification in order to offer
degrees of freedom to its future users to let them define information
objects specific to their application domains.

Contrary to what their names may suggest, the classes and infor-
mation objects bear no relation to the object paradigm. In particular,
they support no inheritance mechanism. We should not confuse, how-
ever, the notion of class with that of type nor should we confuse those
of object and value: objects are never encoded to be transmitted, but
classes are nonetheless taken into account by ASN.1 compilers by means
of dedicated type declarations and subtype constraints presented in Sec-
tion 15.7 on page 341. Besides, we shall see that they authorize a certain

2Note that they are two actual components of a SEQUENCE type, and not two fields
of the class (which cannot be encoded).

312 ASN.1 – Communication between Heterogeneous Systems

degree of freedom to communicating applications and thereby make en-
coders and decoders more flexible.

Although a type needs only to be defined to implicitly contain values
(remember an abstract type is semantically equivalent to a value set), a
class would be better interpreted as a form (see the one of Figure 15.1
on the page before) which should be filled each time a new object is
created. The objects thus created can be gathered in an object set .

Classes can be given a user-friendly syntax to allow the designer of
the communicating application to define the properties of information
objects in a layout very close to a form. The information object classes
can undoubtedly draw an intuitive link between the ASN.1 specification
of the data transfer strictly speaking and specific needs that may arise
for many communicating applications.

A description similar to the one given in this chapter can be found
in a more condensed way in [Mit94].

15.2 Default syntax of information objects and
classes

15.2.1 User’s Guide

Syntactically (only), a class definition can be compared to an imaginary
constructed type whose keyword would be CLASS. The class name is spelt
in capital letters3 and every one of its fields is denoted by an identifier
beginning with an ampersand “&” followed by a lower-case or an upper-
case letter as we shall see later on. The “&” sign makes a distinction
between the fields of a class and the components of a SEQUENCE or SET

type.

The field identifiers are sometimes followed by a type, a reference
to another class or another field of the same class; they can be marked
OPTIONAL, DEFAULT or UNIQUE. But contrary to structured types, the class
fields do not only contain values, they can also contain a type, a value set,
an information object or an information object set; hence the markers
OPTIONAL and DEFAULT have been generalized from the SEQUENCE and SET

types to the information object classes.

3Historically, the macro names (see Chapter 16) included only upper-case letters
and information object classes, which are meant to replace them, follow the same
rule.

15 - Information object classes, objects and object sets 313

A function of any computing language can be modeled by the follow-
ing information object class, which is just another way of representing
the form drawn in Figure 15.1 on page 311:

FUNCTION ::= CLASS {

&ArgumentType ,

&ResultType DEFAULT NULL,

&Errors ERROR OPTIONAL,

&code INTEGER UNIQUE }

Any function is, therefore, modeled by an information object that is
identified by a distinct code4 and includes the following information: the
argument type, the result type (by default, the NULL type) and optionally
an error list, every one of these errors being modeled by an object of
another class called ERROR.

For a function that adds two integers, we define the following infor-
mation object with a name beginning with a small letter (like an abstract
value) and the necessary reference to the form (i.e. the information ob-
ject class) to be filled to define this object:

addition-of-2-integers FUNCTION ::= {

&ArgumentType SEQUENCE { a INTEGER, b INTEGER },

&ResultType INTEGER,

-- empty error list by default

&code 1 }

Such a mixture of heterogeneous information (including two types, a
value and an object set) can obviously not be represented only by ASN.1
types and values.

As clearly shown in the previous example, depending on whether
a field name begins with a lower-case or an upper-case letter and is
followed by a word beginning with a small or a capital letter, the field
belongs to a certain category. In fact, there are seven different categories
of fields as shown in Table 15.1 on the following page. If the field name
begins with a lower-case letter, it refers to a value or an information
object; if it begins with an upper-case letter, it refers to a type, a value
set or an information object set.

4The scope within which the requirement on distinct codes must be respected is
introduced later (see rule 〈7〉 on page 318).

314 ASN.1 – Communication between Heterogeneous Systems

If the field name and if it is followed by then the field of the
starts with object contains

&Upper-case nothing a type

&lower-case a type or a type reference
(Upper-case)

a fixed-type value

&lower-case a type field (&Upper-case) a variable-type value

&Upper-case a type or a type reference
(Upper-case)

a fixed-type value set

&Upper-case a type field (&Upper-case) a variable-type value set

&lower-case a class name
(UPPER-CASES)

an information object

&Upper-case a class name
(UPPER-CASES)

an information object set

Table 15.1: The seven categories of fields of an information object class

We now define a new information object class for our functions that
includes (at least) one field of each of the seven field categories men-
tioned:

OTHER-FUNCTION ::= CLASS {

&code INTEGER (0..MAX) UNIQUE,

&Alphabet BMPString

DEFAULT {Latin1 INTERSECTION Level1},

&ArgumentType ,

&SupportedArguments &ArgumentType OPTIONAL,

&ResultType DEFAULT NULL,

&result-if-error &ResultType DEFAULT NULL,

&associated-function OTHER-FUNCTION OPTIONAL,

&Errors ERROR DEFAULT

{rejected-argument | memory-fault} }

rejected-argument ERROR ::=

{-- object definition --}

memory-fault ERROR ::=

{-- object definition --}

15 - Information object classes, objects and object sets 315

The information object describing the addition of two integers can
then be written as follows (we do not quite respect the class field order-
ing, which is perfectly allowed):

other-addition-of-2-integers OTHER-FUNCTION ::= {

&ArgumentType Pair,

&SupportedArguments {PosPair | NegPair},

&ResultType INTEGER,

&result-if-error 0,

&code 1 }

Pair ::= SEQUENCE {a INTEGER, b INTEGER}

PosPair ::= Pair (WITH COMPONENTS {a(0..MAX), b(0..MAX)})

NegPair ::= Pair (WITH COMPONENTS {a(MIN..0), b(MIN..0)})

We now give the meaning of each field of the class OTHER-FUNCTION.
The field name &code begins with a lower-case letter and is followed
by an ASN.1 type. &code is a fixed-type value field , which means that,
within an information object, this field contains an ASN.1 value that
conforms to the specified type. Besides, the UNIQUE marker ensures that
for every object set of class OTHER-FUNCTION, two objects cannot have
the same identification code. Only a fixed-type value field can be an
identifier field (whose type is generally INTEGER, OBJECT IDENTIFIER or a
CHOICE between these two types5).

The field name &Alphabet starts with a capital letter and is followed
by an ASN.1 type. &Alphabet is a fixed-type value set field , which means
that, within an object, this field contains a value set of the specified type.
It is, for example, the alphabet that must be respected by all the mes-
sages a function may have to display. The notion of value set (presented
in Section 15.5 on page 329) provides the flexibility offered by the set
operators of Section 13.11 on page 285 (and particularly of Figure 13.3
on page 286), as illustrated by the default value of the &Alphabet field
in the OTHER-FUNCTION class definition: it is the character string set of
the Latin1 alphabet on the implementation level 1 of the BMPString type
(see Section 11.11 on page 189).

The field name &ArgumentType begins with an upper-case letter, and
is followed by neither a type nor a class. It is a type field , which means
that in an object, the field contains an ASN.1 type. It enables the user to
indicate the argument type, that differs for each function. We see further
on that such a field can be used to specify an open type, equivalent to
the obsolete ANY type which has been excluded of the standard since

5We made a similar remark on page 242 for the ASN.1:1990 ANY DEFINED BY type.

316 ASN.1 – Communication between Heterogeneous Systems

1994 (see Section 12.8 on page 241). Similarly, &ResultType is a type
field. If it is not defined in the object, it is considered to have the NULL

type (and not ‘value’) by default.

The field name &result-if-error begins with a lower-case letter; it is
followed by the name of a type field. &result-if-error is a variable-type
value field . The term ‘variable’ means that the type is not the same for
all objects, i.e. it is not fixed in the class definition. The result returned
if an error occurs when running the function must be of the same type
as all the other potential results. For this reason, the default value (the
NULL value) of the &result-of-error field must conform to the default
type of the &ResultType field (the NULL type).

The field name &SupportedArguments begins with an upper-case let-
ter, and is followed by the name of a type field. &SupportedArguments

is a variable-type value set field , which means that, in an object, this
field contains a value set that conforms to the type indicated in the field
&ArgumentType (that is the smallest set of values to be taken into account
in all the implementations of this function without generating the error
message rejected-argument). For the other-addition-of-2-integers

object, the supported arguments are pairs whose elements are either
both positive or both negative (why not?!).

The field name &associated-function begins with a lower-case let-
ter, and is followed by the name of an information object class. It is
an object field6, which means that, in an object, this field contains a
reference to another object. This is used to ‘factorize’ a collection of
information shared by several objects (in the present case, the same
function, featuring information that should be shared by others, may
be associated with several other functions). In the same way as ASN.1
types can be recursive (or self-referencial) an information object class
can be referenced in its own definition. It is not allowed, however, to
define recursive objects (as it is forbidden to define recursive values).
The field &associated-function is marked OPTIONAL to indicate that a
function execution does not systematically require the prior execution
of an associated function.

The field name &Errors begins with an upper-case letter, and is fol-
lowed by the name of an information object class. &Errors is an object set

6Note that an ‘object field’ is a ‘field of an object’, but all the fields of an object
are not necessarily ‘object fields’. In the rest of this text, the expression ‘object field’
will always reference one of the seven categories of fields of an object (see Figure 15.1
on page 314).

15 - Information object classes, objects and object sets 317

field , which means that, in an object, this field contains a set of objects
that are instances of the given class. An object set is denoted similarly
as a value set, usually separating the object references by a vertical bar
“|”, and delimited by curly brackets as shown in the default value set
{rejected-argument|memory-fault} associated with the field &Errors in
the definition of the class OTHER-FUNCTION on page 314.

As far as the semantic model of ASN.1 is concerned (see Section 9.4
on page 121), even if two information object classes have syntactically
identical definitions but for the name, they are considered as different
and no compatibility exists between them, i.e. an object of one class
cannot be used to define an object of the other class:

FUNCTION-BIS ::= OTHER-FUNCTION

add FUNCTION-BIS ::=

other-addition-of-2-integers -- forbidden

15.2.2 Reference Manual

Class notation

ObjectClass → DefinedObjectClass
| ObjectClassDefn
| ParameterizedObjectClass

ObjectClassDefn → CLASS “{” FieldSpec “,” · · ·+ “}”
WithSyntaxSpec

FieldSpec → TypeFieldSpec
| FixedTypeValueFieldSpec
| VariableTypeValueFieldSpec
| FixedTypeValueSetFieldSpec
| VariableTypeValueSetFieldSpec
| ObjectFieldSpec
| ObjectSetFieldSpec

〈1〉 The name of all the fields specified in a class definition must be
distinct except if they differ by their (upper/lower) case.
〈2〉 We call:

– type field , a field (of an information object) that references a type
specified in ASN.1;

– fixed-type value field , a field that references a value whose type is
specified at the right-hand side of this field’s name in the informa-
tion object class definition;

318 ASN.1 – Communication between Heterogeneous Systems

– variable-type value field , a field that references a value whose type
is unknown when defining the information object class;

– fixed-type value set field , a field that references a value set whose
type is specified on the right-hand side of this field’s name in the
information object class definition;

– variable-type value set field , a field that references a value set whose
type is unknown when defining the information object class;

– object field (see footnote 6 on page 316), a field that references
another information object (not necessarily of the same class);

– object set field, a field that stores an information object set.

TypeFieldSpec → typefieldreference TypeOptionalitySpec

TypeOptionalitySpec → OPTIONAL

| DEFAULT Type
| ε

〈3〉 TypeFieldSpec is a type field, which means that in an information
object definition this field stores any type that can be specified in ASN.1.
〈4〉 If the OPTIONAL clause is used, the field needs not be allocated within
the object.
〈5〉 If the DEFAULT clause is used, Type indicates the default type of the
type field if this field is not defined within the object.

FixedTypeValueFieldSpec → valuefieldreference Type Unique
ValueOptionalitySpec

〈6〉 FixedTypeValueFieldSpec is a fixed-type value field, which means that
in an information object definition this field stores a value of type Type.

Unique → UNIQUE

| ε
〈7〉 The value of an identifier field (i.e. followed by the UNIQUE key-
word) must be unique within any information object set of this class
(see rule 〈8〉 on page 332).
〈8〉 If the keyword UNIQUE is used, the DEFAULT clause cannot be used.
〈9〉 In the case of a dynamically extensible object set (see on page 331)
whose objects have a field marked UNIQUE, the index of an object that
has been removed may be re-used later on for another object. Checking
this property is down to the application. This problem may occur for an

15 - Information object classes, objects and object sets 319

index of type INTEGER, for instance, but cannot be if the index is typed
OBJECT IDENTIFIER.

ValueOptionalitySpec → OPTIONAL

| DEFAULT Value
| ε

〈10〉 If the OPTIONAL clause is used, the field needs not be allocated within
the object.
〈11〉 If the DEFAULT clause is used, Value indicates the default value of
the value field if it is not defined within the object.
〈12〉 Value should be of the Type appearing in FixedTypeValueFieldSpec
or of a type that is compatible with Type according to the semantic
model of ASN.1 (see Section 9.4 on page 121).

VariableTypeValueFieldSpec → valuefieldreference FieldName
ValueOptionalitySpec

〈13〉 VariableTypeValueFieldSpec is a value field whose type is not known
when writing the specification; in an information object definition, this
field stores a value whose type is specified in the same or some other
information object.
〈14〉 FieldName must be the name of a type field (production Type-
FieldSpec on the preceding page) that is not necessarily in the same
information object class.
〈15〉 If the OPTIONAL alternative is used for ValueOptionalitySpec, the
field denoted by FieldName must be marked OPTIONAL or DEFAULT in the
information object class where it is defined.
〈16〉 If the ‘DEFAULT Value’ alternative is used in ValueOptionalitySpec,
the field denoted by FieldName must include the ‘DEFAULT Type’ clause
in the information object class where it is defined, and Value must be
either of type Type or of a type that is compatible with Type according
to the semantic model of ASN.1 (see Section 9.4 on page 121).

FixedTypeValueSetFieldSpec → valuesetfieldreference Type
ValueSetOptionalitySpec

〈17〉 FixedTypeValueSetFieldSpec is a fixed-type value set field, which
means that in an information object definition, this field stores a value
set of type Type.

ValueSetOptionalitySpec → OPTIONAL

| DEFAULT ValueSet
| ε

320 ASN.1 – Communication between Heterogeneous Systems

〈18〉 If the OPTIONAL clause is used, the field needs not to be allocated
within the object.
〈19〉 If the clause DEFAULT is used, ValueSet indicates the default value
set of the value set field if it is not defined in the object.
〈20〉 ValueSet must be a set of values of type Type or of a type that is
compatible with Type according to the semantic model of ASN.1 (see
Section 9.4 on page 121).

VariableTypeValueSetFieldSpec →
valuesetfieldreference FieldName ValueSetOptionalitySpec

〈21〉 VariableTypeValueSetFieldSpec is a value set field whose type is not
known when writing the specification; this field stores a set of values
that are all of a type specified in the same or some other information
object.
〈22〉 FieldName is the name of a type field (production TypeFieldSpec
on page 318) that is not necessarily in the same information object class.
〈23〉 If the OPTIONAL alternative of ValueSetOptionalitySpec is allowed,
the field denoted by FieldName must be marked OPTIONAL or DEFAULT in
the information object class where it is defined.
〈24〉 If the alternative ‘DEFAULT ValueSet ’ is used for ValueSetOptionali-
tySpec, then the field denoted by FieldName must include the ‘DEFAULT
Type’ clause in the information object class where it is defined, and
ValueSet must be of type Type or of a type that is compatible with Type
according to the semantic model of ASN.1 (see Section 9.4 on page 121).

ObjectFieldSpec → objectfieldreference DefinedObjectClass
ObjectOptionalitySpec

〈25〉 ObjectFieldSpec is an object field, which means that in an informa-
tion object definition, this field stores another information object (not
necessarily of the same class).

ObjectOptionalitySpec → OPTIONAL

| DEFAULT Object
| ε

〈26〉 If the OPTIONAL clause is used, the field needs not be allocated within
the object.
〈27〉 If the DEFAULT clause is used, Object indicates the default object for
the object field if it is not defined within the object.

15 - Information object classes, objects and object sets 321

〈28〉 Object must be an object of the class referenced by DefinedObject-
Class.

ObjectSetFieldSpec → objectsetfieldreference DefinedObjectClass
ObjectSetOptionalitySpec

〈29〉 ObjectSetFieldSpec is an information object set, which means that
within an information object definition, this field stores an information
object set (not necessarily of the same class).

ObjectSetOptionalitySpec → OPTIONAL

| DEFAULT ObjectSet
| ε

〈30〉 If the OPTIONAL clause is used, the field needs not to be allocated
within the object.
〈31〉 If the DEFAULT clause is used, ObjectSet indicates the default object
set for the object set field if it is not defined within the object.
〈32〉 All the objects in ObjectSet must be of the class referenced by
DefinedObjectClass.

FieldName → PrimitiveFieldName “.” · · ·+

〈33〉 If there exists such a series of fields that: the first field is in a
class, say C; every one of the other fields belongs to the class referenced
by the previous field; and the last field belongs to C; then one of the
fields at least must be marked OPTIONAL or DEFAULT. This rule prevents
recursive definitions of classes where none of the objects has a finite
representation.

PrimitiveFieldName → typefieldreference
| valuefieldreference | valuesetfieldreference
| objectfieldreference | objectsetfieldreference

Object notation

Object → ObjectDefn | DefinedObject
| ObjectFromObject | ParameterizedObject

〈34〉 An object definition cannot be recursive even if the associated class
definition is recursive (see rule 〈33〉 above).

ObjectDefn → DefaultSyntax
| DefinedSyntax

〈35〉 The production DefaultSyntax can only be used if the class defini-
tion has no associated user-friendly syntax introduced by the keywords

322 ASN.1 – Communication between Heterogeneous Systems

WITH SYNTAX. If such a syntax WithSyntaxSpec is associated with the
class definition, the DefinedSyntax production (see on page 326) must
be used.

DefaultSyntax → “{” FieldSetting “,” · · ·∗ “}”

FieldSetting → PrimitiveFieldName Setting

〈36〉 There must be exactly one FieldSetting in the object for every
FieldSpec not marked OPTIONAL or DEFAULT in the class definition (see
production ObjectClassDefn on page 317) and at most one FieldSetting
otherwise.
〈37〉 The FieldSettings may appear in any order in the object.

Setting → Type | Value
| ValueSet | Object
| ObjectSet

〈38〉 The alternative of Setting must conform to the corresponding field
of the class (the Type alternative if it is a type field, the Value alterna-
tive if it is a fixed-type or variable-type value, and so on).
〈39〉 For a fixed-type value field (respectively fixed-type value set field),
Setting is a value (respectively value set) of the type specified in the
field or of a type that is compatible with it according to the semantic
model of ASN.1 (see Section 9.4 on page 121)
〈40〉 For a variable-type value field, Setting is a value of the type speci-
fied by the Setting corresponding to the type field indicated in the right-
hand part of the variable-type value field or of a type that is compatible
with it according to the semantic model of ASN.1 (see Section 9.4 on
page 121). The Value production, therefore, must be directly used in-
stead of the production OpenTypeFieldVal on page 348 (in which the
value is preceded by its type and the symbol “:”) since the type is not
open but fixed by another field of the information object.
〈41〉 For a variable-type value set field, Setting is a value set of the type
specified by the Setting corresponding to the type field indicated in the
right-hand part of the variable-type value set field or of a type that is
compatible with it according to the semantic model of ASN.1 (see Sec-
tion 9.4 on page 121).
〈42〉 For an object field (respectively an object set field), Setting is an
object (respectively an object set) of the class specified in the field.

15 - Information object classes, objects and object sets 323

15.3 User-friendly syntax

15.3.1 User’s Guide

We proceed our journey through the land of information objects and
classes showing how we can associate a specific syntax with a class def-
inition to make specifications easier to design. Indeed, these are very
often specified by communicating application designers or by other stan-
dardization groups who know their application domain but cannot be
asked to have a thorough understanding of ASN.1 syntax (for the X.400
e-mail or X.500 directory standards for example).

We will see in Chapter 16 that this specific syntax, called user-
friendly in the rest of the text, shares many common points but for
a few details, with the macro notation which has no longer been part of
the standard since 1994.

A user-friendly syntax, introduced by the keywords WITH SYNTAX, is
denoted after a class definition. In the second place, we specify in curly
brackets a kind of ‘phrase with gaps’7 whose words are all in capital
letters and whose gaps are the class field names (i.e. they begin with the
ampersand “&”). Moreover, we may (it is not compulsory) use commas
to distinguish the different parts of the phrase and thereby improve the
clarity of the syntax. When a field is marked OPTIONAL or DEFAULT in the
class definition, the corresponding part of the phrase must be written in
square brackets to indicate that it is optional.

For the class OTHER-FUNCTION in the previous section, a user-friendly
syntax could be:

OTHER-FUNCTION ::= CLASS {

&code INTEGER (0..MAX) UNIQUE,

&Alphabet BMPString DEFAULT

{Latin1 INTERSECTION Level1},

&ArgumentType ,

&SupportedArguments &ArgumentType OPTIONAL,

&ResultType DEFAULT NULL,

&result-if-error &ResultType DEFAULT NULL,

&associated-function OTHER-FUNCTION OPTIONAL,

&Errors ERROR DEFAULT

{rejected-argument|memory-fault} }

7This phrase is no more than a formal representation of the form in Figure 15.1
on page 311.

324 ASN.1 – Communication between Heterogeneous Systems

WITH SYNTAX {

ARGUMENT TYPE &ArgumentType,

[SUPPORTED ARGUMENTS &SupportedArguments,]

[RESULT TYPE &ResultType,

[RETURNS &result-if-error IN CASE OF ERROR,]]

[ERRORS &Errors,]

[MESSAGE ALPHABET &Alphabet,]

[ASSOCIATED FUNCTION &associated-function,]

CODE &code }

memory-fault ERROR ::= {-- object definition --}

This user-friendly syntax definition calls for a few remarks:

• the words entirely in capital letters cannot be type or value key-
words to prevent confusion (the forbidden keywords are listed in
rule 〈9〉 on page 326);

• if successive optional parts appear, they cannot start with the same
word;

• as the optional part ‘RETURNS’ is inside the ‘RESULT TYPE’ part, it is
impossible to allocate a value to the &result-if-error field with-
out valuating the &ResultType field;

• it is not strictly (syntactically) necessary to precede a field name by
a word in capital letters but it is highly recommended for reading’s
sake.

When a user-friendly syntax is associated with a class definition, it
should necessarily be used for defining objects of this class. An object
is still defined in curly brackets but instead of the usual ‘two-column’
association of a ‘value’ to a field, we simply fill in the gaps (beginning
with an ampersand “&”) of the form. For the addition function of two
integers introduced in the previous section, it gives:

addition-of-2-integers OTHER-FUNCTION ::= {

ARGUMENT TYPE Pair,

SUPPORTED ARGUMENTS {PosPair | NegPair},

RESULT TYPE INTEGER,

RETURNS 0 IN CASE OF ERROR,

CODE 1 }

When we use the user-friendly syntax, words and commas must ap-
pear in the same order as in the class definition, whereas if an object is
defined with the class default syntax, the field may appear in any order.

15 - Information object classes, objects and object sets 325

Finally, the user-friendly syntax should be defined with great care to
make defining information easier without being too verbose. It should
also conform to the semantic rules stated in the Reference Manual be-
low (for this last point, the check-up can be performed by an ASN.1
compiler).

15.3.2 Reference Manual

User-friendly notation for an information object class

WithSyntaxSpec → WITH SYNTAX SyntaxList
| ε

〈1〉 The WITH SYNTAX clause enables specifying a user-friendly syntax to
make object definition easier.

SyntaxList → “{” TokenOrGroupSpec · · ·+ “}”
TokenOrGroupSpec → RequiredToken

| OptionalGroup

RequiredToken → Literal
| PrimitiveFieldName

〈2〉 Every PrimitiveFieldName of the class must appear exactly once in
the ‘phrase with gaps’ SyntaxList .

OptionalGroup → “[” TokenOrGroupSpec · · ·+ “]”

〈3〉 If, during the parsing stage of the OptionalGroup, the next lexeme8

of the stream is acceptable as the first lexeme of this OptionalGroup, the
group is considered as ‘present’ (and all the lexical tokens that consti-
tute the group must be found in the same order after the first lexeme),
otherwise the group is considered as ‘absent’.
〈4〉 It is recommended that the first lexical token of an OptionalGroup
should be a Literal (all in upper-case letters).
〈5〉 Every OptionalGroup must contain at least a PrimitiveFieldName or
another OptionalGroup (which should conform to this rule recursively)
to avoid collecting information that could not be stored in the object.
〈6〉 An OptionalGroup must be associated only with fields marked
OPTIONAL or DEFAULT in the class.
〈7〉 The OptionalGroup must be defined so that no valuation of Setting

8The notions of parsing, lexeme and lexical token, which are necessary for un-
derstanding these rules are defined in Section 8.2 on page 98 and in Chapter 22 on
page 463.

326 ASN.1 – Communication between Heterogeneous Systems

(see on the current page) can apply to several FieldNames. For example,
the SyntaxList ‘[LITERAL [A &field1] [B &field2]]’ is not ambiguous
since the internal OptionalGroups do not begin with the same word.
〈8〉 If an OptionalGroup begins with a Literal, the lexical token following
the OptionalGroup must also be a Literal different from every Literal
that starts the immediately preceding OptionalGroups (this recalls the
rule 〈14〉 on page 224 about requirements on distinct tags in groups of
successive optional components of a SEQUENCE type).

Literal → word
| “,”

〈9〉 word cannot be one of the following keywords: BIT, BOOLEAN,
CHARACTER, CHOICE, EMBEDDED, END, ENUMERATED, EXTERNAL, FALSE,
INSTANCE, INTEGER, INTERSECTION, MINUS-INFINITY, NULL, OBJECT, OCTET,
PLUS-INFINITY, REAL, RELATIVE-OID, SEQUENCE, SET, TRUE, UNION. Since
word consists only of upper-case letters, it cannot be confused with one
of the keywords for character string types (see Chapter 11).
〈10〉 Commas are the only punctuation mark allowed in the user-friendly
syntax.

User-friendly notation for an information object

DefinedSyntax → “{” DefinedSyntaxToken · · ·∗ “}”
DefinedSyntaxToken → Literal

| Setting

Literal → word
| “,”

Setting → Type | Value
| ValueSet | Object
| ObjectSet

〈11〉 The rules 〈38〉 to 〈42〉 on page 322 apply also when Setting is used
in a user-friendly syntax.
〈12〉 When Literal, spelt in upper-case letters (appearing in the object’s
DefinedSyntax at the same place as in the class’s SyntaxList, see on
the preceding page) can also be interpreted as a typereference or an
objectsetreference, it must be interpreted as a word.
〈13〉 The DefinedSyntax is invalid if it does not allocate all the manda-
tory fields of the SyntaxList (see on the page before) of the class.

15 - Information object classes, objects and object sets 327

〈14〉 When a Literal of the DefinedSyntax appears in an OptionalGroup
of the class’s WithSyntaxSpec, the whole OptionalGroup is should be
present in the object definition and one of the PrimitiveFieldNames of
this OptionalGroup must be allocated a value through a Setting in this
DefinedSyntax .

15.4 Example: the classes ATTRIBUTE and
MATCHING-RULE of the X.500 recommendation

In Section 7.3 on page 83, we presented the X.500 directory service. It
is a distributed information database that plays a major role in open
systems inter-connection because it improves communication between
applications. To introduce the description of an application (or any other
communicating entity) in the directory database, the appropriate values
are allocated to the corresponding attributes; to consult the database,
a certain number of comparison rules are provided with arguments to
obtain the description of the application(s) whose attributes satisfy the
criterions.

The attributes (or ‘attribute types’) are information objects of the
ATTRIBUTE class defined by9:

ATTRIBUTE ::= CLASS {

&derivation ATTRIBUTE OPTIONAL,

&Type OPTIONAL,

&equality-match MATCHING-RULE OPTIONAL,

&ordering-match MATCHING-RULE OPTIONAL,

&substrings-match MATCHING-RULE OPTIONAL,

&single-valued BOOLEAN DEFAULT FALSE,

&collective BOOLEAN DEFAULT FALSE,

&no-user-modification BOOLEAN DEFAULT FALSE,

&usage Attribute-Usage

DEFAULT userApplications,

&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

[SUBTYPE OF &derivation]

[WITH SYNTAX &Type]

[EQUALITY MATCHING RULE &equality-match]

[ORDERING MATCHING RULE &ordering-match]

[SUBSTRINGS MATCHING RULE &substrings-match]

9Note the keywords WITH and SYNTAX are used also within the user-friendly defini-
tion: these keywords are not forbidden in rule 〈9〉 on the preceding page.

328 ASN.1 – Communication between Heterogeneous Systems

[SINGLE VALUE &single-valued]

[COLLECTIVE &collective]

[NO USER MODIFICATION &no-user-modification]

[USAGE &usage]

ID &id }

AttributeUsage ::= ENUMERATED { userApplications(0),

directoryOperation(1), distributedOperation(2),

dSAOperation(3) }

where &derivation indicates that the attribute specializes another one;
&Type is the ASN.1 type of the attribute’s value; &equality-match,
&ordering-match and &substrings-match reference the comparison rules
to apply on this attribute when consulting the database; &single-valued
equals TRUE if the attribute can have only one value; &collective equals
TRUE if the value of this attribute is shared by several entities of the direc-
tory; &no-user-modification equals TRUE if the value cannot be modified
by the directory service users; &usage enables to restrict the usage con-
text of this attribute; &id is the (single and unique) object identifier of
this attribute.

We do not aim at describing the directory service into detail here;
are readers interested to know more on this information object class of
the X.500 recommendation, they may refer to [Cha96].

The comparison rules are instances of the class MATCHING-RULE:

MATCHING-RULE ::= CLASS {

&AssertionType OPTIONAL,

&id OBJECT IDENTIFIER UNIQUE }

WITH SYNTAX {

[SYNTAX &AssertionType]

ID &id }

They include the type of the data to be compared and a distinct object
identifier for every matching rule.

The example of the ATTRIBUTE class clearly shows that an information
object class is a motley mixture of information which potentially allows
defining any concept. We shall see that only part of this information is
actually selected depending on the specific communication needs of the
case at hand.

15 - Information object classes, objects and object sets 329

Our next example is the attribute which represents an individual
name; the comparison function returns true if the two arguments are
equal regardless of their (upper/lower) case:

name ATTRIBUTE ::= {

WITH SYNTAX DirectoryString

EQUALITY MATCHING RULE caseIgnoreMatch

ID {joint-iso-itu-t ds(5) attributeType(4) 2} }

DirectoryString ::= CHOICE {

teletexString TeletexString (SIZE (1..maxSize)),

printableString PrintableString (SIZE (1..maxSize)),

universalString UniversalString (SIZE (1..maxSize)),

bmpString BMPString (SIZE (1..maxSize)),

utf8String UTF8String (SIZE (1..maxSize)) }

maxSize INTEGER ::= 25

caseIgnoreMatch MATCHING-RULE ::= {

SYNTAX DirectoryString

ID {id-mr 2} }

id-mr OBJECT IDENTIFIER ::=

{ joint-iso-itu-t ds(5) matchingRule(13) }

The [X.501] recommendation defines many other information objects
and the reader can find them in the annexes of this recommendation or
in [Cha96]. We shall use the examples introduced here in the rest of this
chapter.

15.5 Value sets and information object sets

15.5.1 User’s Guide

In this section, we describe how to collect objects (values respectively)
to create object sets (value sets respectively). These will be used in par-
ticular for defining specific subtype constraints, called table constraints.

The simplest way of defining an object set is to enumerate the objects
in curly brackets, separated by a vertical bar. An object set is defined
by a name that begins with an upper-case letter; it is followed by the
name of the object class:

MatchingRules MATCHING-RULE ::= {

caseIgnoreMatch | booleanMatch | integerMatch }

In order to make out the structure of an object set, the reader may
represent it as a matrix whose columns are the objects of the set and the

330 ASN.1 – Communication between Heterogeneous Systems

caseIgnoreMatch booleanMatch integerMatch

&AssertionType DirectoryString BOOLEAN INTEGER

&id {id-mr 2} {id-mr 13} {id-mr 14}

Figure 15.2: Object set representation matrix

rows the fields of the class10. The collection of objects MatchingRules

defined above can therefore be represented by the matrix of Figure 15.2.

An object set can also be defined with the set operators UNION,
INTERSECTION, ALL and EXCEPT encountered in Section 13.11 on page 285
when discussing the subtype constraint combination. Hence, the set:

LessMatchingRules MATCHING-RULE ::= {

MatchingRules EXCEPT caseIgnoreMatch }

contains only the two objects booleanMatch and integerMatch.

If two objects have exactly the same definition but have different
names, say a and b, then they both appear in the object set (i.e. the set
{{a} UNION {b}} is equivalent to {a|b}).

If an object set contains an extension marker “...”, the set is dy-
namically extensible, which implies that the communicating application
may add or remove objects while running (see rule 〈5〉 on page 332). It
is important to note that object sets are the only dynamically extensible
entities in ASN.1: types, subtype constraints and value sets can only be
extended statically in a new version of the ASN.1 specification).

So the set:

ExtensibleMatchingRules MATCHING-RULE ::= {

caseIgnoreMatch | booleanMatch | integerMatch, ... }

initially contains three objects, but some other objects may be dynam-
ically added (and some removed) by the communicating application.
Note the syntax of this example: a comma appears before the extension
marker while the objects are separated by a vertical bar.

If an object is defined by:

ExtensibleMatchingRules MATCHING-RULE ::= {...}

its content depends entirely on the implementation: it statically contains

10We do not adopt here the convention of the ASN.1 standard where the objects
are the matrix rows, simply for clarity’s sake since our representation will enable us to
explain table constraints more visually in the next section. The use of this convention
is consistent throughout the rest of this text.

15 - Information object classes, objects and object sets 331

no objects at the beginning but the communicating application will dy-
namically insert them according to its own needs and a mechanism is
supposed to exist independently of ASN.1 so that the peer application
can add or remove the same object in its own dynamically extensible
object set.

This concept of extensibility would allow, for example, an open net-
work management system (see Section 23.3 on page 482) to dynamically
take into account the description of new network elements as information
objects. It is just as if the object set were defined within the specifica-
tion and parameterized this specification. The extensible object set is
one case of parameter of the abstract syntax, which will be dealt with
in Section 17.3 on page 389.

The definition of a value set is syntactically the same as the object
set’s: the reference name begins with an upper-case letter but is followed
by a type or a type reference:

Values INTEGER ::= { 1 | 2 | 3 }

This value set is semantically equivalent to the following constrained
type:

Values ::= INTEGER (1|2|3)

This semantical equivalent demands that a value set cannot be empty
since a type should contain at least one value.

The notion of value set was introduced in the ASN.1:1994 standard
to homogenize the syntax of collections of objects with that of collections
of values, and their use in a parameterization context (see Chapter 17) in
particular. For other cases, it is recommended to use the usual subtyping
(see Chapter 13), which is both more readable and intuitive.

A value set can contain an extension marker, but contrary to object
sets, it is never dynamically extensible and has to be statically extended
in a new version of the ASN.1 specification. The ‘{...}’ expression
cannot, therefore, be used to define a value set, for this set would be
initially empty.

15.5.2 Reference Manual

Object set notation

ObjectSet → “{” ObjectSetSpec “}”

332 ASN.1 – Communication between Heterogeneous Systems

ObjectSetSpec → RootElementSetSpec
| RootElementSetSpec “,” “...”
| RootElementSetSpec “,” “...” “,”

AdditionalElementSetSpec
| “...”
| “...” “,” AdditionalElementSetSpec

〈1〉 An object set is defined using the set operators of ElementSetSpec
(see on page 335). The objects are generally separated by a vertical
bar “|”.
〈2〉 The set ObjectSetSpec is made of the objects referenced by RootEle-
mentSetSpec and those referenced by AdditionalElementSetSpec. The
set operators take into account all the information objects, whether
they are within the root or in the extensions of each object set used in
the set combination (this does not apply to value sets as indicated in
rule 〈14〉 on the next page).
〈3〉 If an extensible object set, A, is referenced within the extension root
of another extensible object set, B, all objects of A are objects of the
extension root of B, whether they are in the root or in the extension
series of A.
〈4〉 If two syntactically identical objects are referenced by two different
names in an ObjectSet, they must appear twice.
〈5〉 If the second or third alternative of ObjectSetSpec is used, the
set includes objects in the extension root; these objects might be
supported by any implementation of the protocol and therefore cannot
be dynamically removed by the communicating application11. Such a
specific behavior, not documented in the ASN.1 standard, needs to be
clearly described as a comment in the ASN.1 specification.
〈6〉 If the fourth alternative of ObjectSetSpec is used, i.e. ObjectSet
equals “{...}”, the object set depends on the implementation: it is
initially empty but elements may be dynamically added or removed by
the communicating application [ISO8824-2, annex E].
〈7〉 If an extensible object set is referenced within another object set,
the extension marker is inherited (see also rule 〈2〉 on the current page).
〈8〉 In the case of a dynamically extensible object set whose objects
have a field marked UNIQUE, the index of an object that has been
removed can be re-used later for another object. Checking this property

11For example, this principle is adopted by the X.400 and X.500 standards as well
as in secured applications to impose the availability of encryption algorithms on every
implementation.

15 - Information object classes, objects and object sets 333

is down to the application. This problem may arise for an index of type
INTEGER, for instance, but it cannot occur if the index is typed OBJECT

IDENTIFIER.
〈9〉 Contrary to extensions in CHOICE, SEQUENCE and SET types, the
version double square brackets “[[” and “]]”, together with the second
extension marker “...” and the exception marker “!” are not allowed
in an extensible object set definition.
〈10〉 If the module contains the EXTENSIBILITY IMPLIED clause in its
header, it does not influence the object sets defined in this module (see
rule 〈9〉 on page 114).

Value set notation

ValueSet → “{” ElementSetSpecs “}”
ElementSetSpecs → RootElementSetSpec

| RootElementSetSpec “,” “...”
| RootElementSetSpec “,” “...” “,”

AdditionalElementSetSpec

〈11〉 The definitions ‘typereference Type “::=” “{” ElementSetSpecs
“}”’ and ‘typereference “::=” Type “(” ElementSetSpecs “)”’ are se-
mantically equivalent.

The first notation (in curly brackets), which is specific to value sets, was
introduced to make the definitions of the types parameterized by value
sets consistent with the definitions of the types parameterized by object
sets. For other cases, it is recommended to use the usual subtyping (i.e.
with parentheses), which is both more readable and more intuitive (see
Chapter 13).
〈12〉 A value set is defined using the set operators of ElementSetSpec
(see on page 335). Values are generally separated by a vertical bar “|”.
〈13〉 The ValueSet is made of the union of the values referenced by
RootElementSetSpec with those referenced by AdditionalElementSet-
Spec.
〈14〉 For RootElementSetSpec, and possibly for AdditionalElementSet-
Spec, the set operators are applied to every set’s extension root
regardless of any extension mark “...” or of extensions.
〈15〉 The final result of the set combination (ElementSetSpecs) must
have at least one common value with the parent type or with the
parent type’s root if the latter includes an extensible subtype constraint
(intermediate results of the set combination may be empty). This

334 ASN.1 – Communication between Heterogeneous Systems

condition is necessary because ValueSet is a type (see rule 〈7〉 on
page 110) which ASN.1 imposes to be not empty to be encoded (see the
difference with ObjectSet, on page 331, which may be empty since it is
never encoded).
〈16〉 Before applying set operators (according to rule 〈14〉 on the
page before), every value set (SubtypeElements) appearing in the set
combination ElementSetSpecs must be ensured to have at least one
common value with the parent type.
〈17〉 Contrary to extensions in CHOICE, SEQUENCE and SET types, the
version double square brackets “[[” and “]]”, nor the second extension
marker “...” nor the exception marker “!” are allowed in an extensible
value set definition.
〈18〉 The EXTENSIBILITY IMPLIED clause in the header of a module
does not affect the value sets defined in this module (see rule 〈9〉 on
page 114).
〈19〉 Contrary to an object set, a value set is not dynamically extensible
(otherwise it could happen to be empty, which is not allowed).
〈20〉 If ElementSetSpecs references extensible value sets, the extension
marker is not inherited by the resulting set (see also rule 〈14〉 on the
page before). A value set is therefore extensible only if it includes an
extension marker ‘at its top level’.

〈21〉 The ASN.1 working group now thinks it has been a mistake to
allow the extension marker “...” in value sets because the rule 〈11〉
on the preceding page implies that all ASN.1 types can be extensible,
which proves troublesome for their PER encoding (see Chapter 20). It
is therefore recommended to be very cautious when inserting extension
makers in value sets.

Common productions

RootElementSetSpec → ElementSetSpec
AdditionalElementSetSpec → ElementSetSpec

〈22〉 In the rest of this section, the term ‘element’ stands for either a
value or an information object.
〈23〉 It is recommended not to use too complex set combinations since
an ASN.1 tool is very unlikely to be able to compute them.
〈24〉 A (value or object) set of the form {{a | b}} is equivalent to
{a | b}, for there is no concept of set of (value or object) sets in ASN.1
(contrary to mathematical common knowledge).

15 - Information object classes, objects and object sets 335

ElementSetSpec → Unions
| ALL Exclusions

〈25〉 The resulting set is made of all the elements specified in Unions (1st
alternative), or of all the elements of the governor except those specified
in Exclusions (2nd alternative) (see Figure 13.3 on page 286).

Unions → Intersections
| UElems UnionMark Intersections

〈26〉 The resulting set is made of all the elements specified in Intersec-
tions (1st alternative), or of those appearing at least once in UElems or
in Intersections (2nd alternative) (see Figure 13.3 on page 286).

UElems → Unions

UnionMark → “|”
| UNION

〈27〉 It is recommended to use throughout a specification either the key-
words UNION and INTERSECTION, or the symbols “|” and “^”.

Intersections → IntersectionElements
| IElems IntersectionMark IntersectionElements

〈28〉 The resulting set is made of all the elements specified in Intersec-
tionElements (1st alternative) or of those appearing at least once in
IElems or in IntersectionElements (2nd alternative) (see Figure 13.3 on
page 286).

IElems → Intersections

IntersectionMark → “^”
| INTERSECTION

IntersectionElements → Elements
| Elems Exclusions

〈29〉 The resulting set is made of all the elements specified in Elements
(1st alternative), or of those appearing in Elems but not in Exclusions
(2nd alternative) (see Figure 13.3 on page 286).

Elems → Elements
Exclusions → EXCEPT Elements

〈30〉 EXCEPT takes precedence over INTERSECTION and “^”, which, them-
selves, take precedence over UNION and “|”.
〈31〉 If ElementSetSpec is used for defining a value set, the joint use of
the EXCEPT operator together with a recursive value set cannot define an

336 ASN.1 – Communication between Heterogeneous Systems

empty value set. For example, the type ‘U ::= SET { a U (ALL EXCEPT

U) OPTIONAL }’, which contains the value {} is not empty. But the con-
straint ‘(ALL EXCEPT U)’ is equivalent to an empty value set, which is
not allowed semantically, then the type U is illegal.

Elements → SubtypeElements
| ObjectSetElements
| “(” ElementSetSpec “)”

〈32〉 The alternative SubtypeElements (see Section 13.11.2 on page 288)
can be used only if ElementSetSpec is used to define a value set (see also
rule 〈16〉 on page 334).
〈33〉 The alternative ObjectSetElements can be used only if ElementSet-
Spec is used to define an information object set.

ObjectSetElements → Object
| DefinedObjectSet
| ObjectSetFromObjects
| ParameterizedObjectSet

〈34〉 In the four alternatives, the objects should be instances of the
governing class.

15.6 Accessing the information stored in ob-
jects and object sets

15.6.1 User’s Guide

Since objects or object sets are meant to store information, we need
a notation to point at every piece of it so that it could be used when
defining types and abstract values in ASN.1 specifications (remember
that data can only be encoded, hence transmitted, if they are related to
an ASN.1 type). To extract the information from an object (or from an
object set), we use a dotted notation which follows the object (or object
set) reference.

Thus, the type DirectoryString can be extracted of the object
caseIgnoreMatch (see on page 329) to define, for example, the follow-
ing value:

caseIgnoreMatchValue caseIgnoreMatch.&AssertionType ::=

printableString:"Escher"

15 - Information object classes, objects and object sets 337

We can also extract the object identifier of this very object to write:

id-mr-caseIgnoreMatch OBJECT IDENTIFIER ::=

caseIgnoreMatch.&id

And if this dotted notation itself references an object, we go further
down in the information by concatenating the fields as in the value

below:

CLASS1 ::= CLASS { &obj CLASS2 }

CLASS2 ::= CLASS { &val INTEGER }

object1 CLASS1 ::= { &obj object2 }

object2 CLASS2 ::= { &val 5 }

value INTEGER ::= object1.&obj.&val

Specific conditions apply to this dotted field chain, in particular
to avoid intractable self-reference: these are described in the section
‘Reference Manual’.

This dotted notation is very common in computing. We now apply
it to information object sets to build up collections of objects or values.

To extract the object identifiers of the information object set
MatchingRules (see on page 329), we simply write:

Oids OBJECT IDENTIFIER ::= {MatchingRules.&id}
Note the capital letter for Oids and the curly brackets after the symbol
“::=” to indicate that the result of this extraction is a value set (of type
OBJECT IDENTIFIER). This value set is actually equivalent to:

Oids OBJECT IDENTIFIER ::=

{ {id-mr 2} | {id-mr 12} | {id-mr 13} }
that is to say that we extract the second row of the matrix in Figure 15.2
on page 330, which could have been informally represented as follows to
highlight the row that is extracted:

Oids OBJECT IDENTIFIER ::=

{ {id-mr 2} {id-mr 12} {id-mr 13} }
In mathematical terms, we would say that we carried out a projection
of the matrix MatchingRules on its &id row.

If we now go back on the information object class OTHER-FUNCTION

(see on page 324) to define the object set:

SupportedFunctions OTHER-FUNCTION ::= {
addition-of-2-integers | substraction-of-2-integers |

multiplication-of-2-integers }

338 ASN.1 – Communication between Heterogeneous Systems

First parta Last field name a Productionb

Fixed-type value ValueFromObject
Variable-type value ValueFromObject
Fixed-type value set ValueSetFromObjects

Object Variable-type value set ValueSetFromObjects
Type TypeFromObject

Object ObjectFromObject
Object set ObjectSetFromObjects

Fixed-type value ValueSetFromObjects
Variable-type value Impossible
Fixed-type value set ValueSetFromObjects

Object set Variable-type value set Impossible
Type Impossible

Object ObjectSetFromObjects
Object set ObjectSetFromObjects

aLet a dotted notation of the form ‘obj.&a.&b.&c.&d’, the part
‘obj.&a.&b.&c’ is called the first part and ‘&d’ the last field name or
‘second part’ (it is the object field or object set field pointed at by
‘obj.&a.&b.&c’).

bThese productions of ASN.1 grammar are presented in Section
15.6.2 starting on the next page.

Table 15.2: Information extraction from objects and object sets

then the notation SupportedFunctions.&Errors denotes the object set
that is in fact the set of all the errors returned by these three functions.
It is built up by a union (“|” symbol) of the object sets associated with
the &Errors field of every object in the SupportedFunctions set.

If the object set SupportedFunctions is dynamically extensible, the
resulting object set SupportedFunctions.&Errors is dynamically exten-
sible too. If, however, a value set is built by information extraction
from an extensible object set, it is not extensible (a value set cannot be
dynamically extensible).

All the possible extractions operated on an object or an object set are
detailed in Table 15.2. The first row can be read “if we extract a fixed-
type value field from an object, we obtain a value provided we conform
to the rules associated with the grammar production ValueFromObject
described in the Reference Manual further on”.

15 - Information object classes, objects and object sets 339

15.6.2 Reference Manual

〈1〉 The series of dotted fields ‘ReferencedObjects “.” FieldName’
(where the production ReferencedObjects and FieldName are defined
on page 341) used throughout the current section can be divided into
two parts: the first part (i.e. without the last PrimitiveFieldName)
and the last field name or ‘second part’. For example, for the reference
‘obj.&a.&b.&c.&d’, the first part is ‘obj.&a.&b.&c’ and the last field
name is ‘&d’.
〈2〉 The Table 15.2 on the preceding page indicates which grammar
production must be applied depending on what is referenced by the
first part and the last field name of a chain of field names.

ValueFromObject notation

ValueFromObject → ReferencedObjects “.” FieldName

〈3〉 The first part should denote an object and the last field name
should denote a fixed-type or variable-type value field of this object,
which means that this notation is used to extract a value from an
information object.
〈4〉 If FieldName is marked OPTIONAL in the class definition, this
notation can only be associated with a field of an object that is
marked OPTIONAL or DEFAULT in its information object class, or to a
component that is marked OPTIONAL or DEFAULT in a SEQUENCE or SET type.

ValueSetFromObjects notation

ValueSetFromObjects → ReferencedObjects “.” FieldName

〈5〉 The first part denotes:

– an object; then the last field name denotes a fixed-type or variable-
type value set field of this object, or

– an object set; then the last field name denotes a fixed-type value
field or a fixed-type value set field of any object in this set;

that is to say, this notation can extract a value set from an information
object set (a matrix) or from an object (a column of a matrix).
〈6〉 If the first part denotes an object and if the last field name denotes
a value set field, ValueSetFromObjects is the union of the selected value
sets (every value can appear only once in the resulting set).
〈7〉 If the first part denotes a object set and if the last field name
denotes a fixed-type value field, ValueSetFromObjects is the set made
of the selected values.

340 ASN.1 – Communication between Heterogeneous Systems

〈8〉 If a value set ValueSetFromObjects is extracted from an extensible
object set, the resulting value set does not inherit the extension
marker (see rule 〈21〉 on page 334). As a result, it is impossible
to use a dynamically extensible object set of the form ‘{...}’ or
‘{..., AdditionalElementSetSpec}’ (see production ObjectSetSpec page
332) because the extracted value set can be empty sometime during
communication.
〈9〉 If FieldName is marked OPTIONAL in the class definition, this
notation can only be associated with a field of an object that is
marked OPTIONAL or DEFAULT in its information object class, or to a
component that is marked OPTIONAL or DEFAULT in a SEQUENCE or SET type.

TypeFromObject notation

TypeFromObject → ReferencedObjects “.” FieldName

〈10〉 The first part must denote an object and the last field name must
denote a type field of this object, which means that this notation is
used to extract a type from an information object.
〈11〉 If FieldName is marked OPTIONAL in the class definition, this
notation can only be associated with a field of an object that is marked
OPTIONAL or DEFAULT in its information object class, or to a component
that is marked OPTIONAL or DEFAULT in a SEQUENCE or SET type.
〈12〉 This production, which extracts a precise type from an information
object, should not be confused with the production ObjectClassField-
Type on page 347 that defines an open type.

ObjectFromObject notation

ObjectFromObject → ReferencedObjects “.” FieldName

〈13〉 The first part must denote an object and the last field name must
denote an object field of this object, i.e. this notation is used to extract
an object from another information object.
〈14〉 If FieldName is marked OPTIONAL in the class where it is defined,
this notation can only be associated with a field of an object that is
marked OPTIONAL or DEFAULT in its information object class.

ObjectSetFromObjects notation

ObjectSetFromObjects → ReferencedObjects “.” FieldName

15 - Information object classes, objects and object sets 341

〈15〉 The first part denotes:

– an object; then the last field name indicates an object set field of
this object, or

– a object set; then the last field name indicates an object field or
an object set field of any object in this set;

that is to say this notation can extract an object set from another
information object set (a matrix) or from an information object (a
column of a matrix).
〈16〉 If the first part denotes an object set and if the last field name
denotes an object set field, ObjectSetFromObjects is the union of the
selected object sets (see rule 〈4〉 on page 332).
〈17〉 If FieldName is marked OPTIONAL in the class definition, this
definition can only be associated with a field of an object that is marked
OPTIONAL or DEFAULT in its information object class.
〈18〉 If an extensible object set is referenced within another object
set, the extension marker is inherited, i.e. the notation ObjectSet-
FromObjects produces a (dynamically) extensible object set if either
the pointed object set or one of the extracted object sets is extensible
(note the difference with rule 〈8〉 on the preceding page).

Productions communes

ReferencedObjects → DefinedObject | ParameterizedObject
| DefinedObjectSet | ParameterizedObjectSet

FieldName → PrimitiveFieldName “.” · · ·+

〈19〉 In FieldName, all the PrimitiveFieldNames but the last one must
be objectfieldreferences or objectsetfieldreferences.

PrimitiveFieldName → typefieldreference
| valuefieldreference | valuesetfieldreference
| objectfieldreference | objectsetfieldreference

15.7 A simple case study of how to extract in-
formation modeled by a class

15.7.1 User’s Guide

After this long description of the concepts of class, object and object
set, we now address the real issue for those involved in telecommunica-
tions: during a data transfer, how can we use the information stored in

342 ASN.1 – Communication between Heterogeneous Systems

objects? This is where the quotation due to Rousseau in the epigraph
of this chapter starts to take its full meaning!

Consider a directory where every entry describes an individual by
its surname, first name and phone number. Then these three attributes
can be modeled by three information objects12 of the class ATTRIBUTE

defined on page 327:

surname ATTRIBUTE ::= { -- family name

SUBTYPE OF name

WITH SYNTAX DirectoryString

ID id-at-surname }

givenName ATTRIBUTE ::= { -- first name

SUBTYPE OF name

WITH SYNTAX DirectoryString

ID id-at-givenName }

countryName ATTRIBUTE ::= { -- country

SUBTYPE OF name

WITH SYNTAX PrintableString (SIZE (2)) -- [ISO3166] codes

SINGLE VALUE TRUE

ID id-at-countryName}

and be gathered together in the following object set (note the upper-case
letter for the reference):

SupportedAttributes ATTRIBUTE ::=

{surname | givenName | countryName}

To modify one of the three attributes’ values in our directory, we
may assume that it is necessary to transmit the (unique) identifier of
this attribute (the &id field of the object that models this attribute) and
its new value (which should conform to the type stored in the &Type

field of the same13 object). We collect these data to be transmitted in
a SEQUENCE type as follows:

AttributeIdAndValue1 ::= SEQUENCE {

ident ATTRIBUTE.&id,

value ATTRIBUTE.&Type }

which can be read: in a value of type AttributeIdAndValue1, the ident

component takes the object identifier stored in the &id field14 of an object

12These three information objects are defined in the [X.520] recommendation. The
type DirectoryString was defined on page 329.

13We will see further why we stress on the word ‘same’.
14The syntax might seem sibylline since the &id field does not begin with an upper-

case letter whereas a type reference is expected here. The meaning of each of these

15 - Information object classes, objects and object sets 343

of class ATTRIBUTE and the value component has the type specified by
the &Type field of an object of class ATTRIBUTE.

The value component of the AttributeIdAndValue1 type can there-
fore have any type depending on the object considered (DirectoryString
for the surname and givenName objects, or PrintableString for the
countryName object). The value component is said to be of an open
type. We now have the equivalent for the ANY type of ASN.1:1990 (see
Section 12.8 on page 241), which has been removed from the ASN.1
standard15 since 1994.

As for the ANY type, a value of an open type is defined by the effective
type of the value followed by the “:” symbol and the value expression,
such as ‘INTEGER:5’.

We propose to use the following informal representation for the
AttributeIdAndValue1 type to indicate more clearly which value set cor-
responds to every component of the SEQUENCE type:

AttributeIdAndValue1 ::= SEQUENCE {
ident all &id fields of the infinity of objects of class ATTRIBUTE ,

value the infinity of types potentially definable in ASN.1 }

But these two sets are infinite, which is (much!) too large for the
initial problem. Besides, a value of an open type is encoded as an octet
string (see Part III on page 391) and if the open type is not constrained,
the receiving application will not be able to interpret this series of octets.

We now constrain every component of the SEQUENCE type so that the
information objects that are being considered can be taken in the set
SupportedAttributes but not in the infinity of objects of the ATTRIBUTE

class that could be defined. This particular constraint called simple table
constraint16 consists in a constraining set denoted in round brackets after
the type of every component like all the ASN.1 subtype constraints:

AttributeIdAndValue2 ::= SEQUENCE {

ident ATTRIBUTE.&id({SupportedAttributes}),

value ATTRIBUTE.&Type({SupportedAttributes}) }

notations are given by the semantic rules of the ObjectClassFieldType grammar pro-
duction in Section 15.7.2 on page 347.

15In ASN.1:1990, the AttributeIdAndValue1 type above would have been written:

AttributeIdAndValue1 ::= SEQUENCE {
ident OBJECT IDENTIFIER,

value ANY }
16It is defined in [ISO8824-2, clause 10] by the grammar production SimpleTable-

Constraint (see on page 349).

344 ASN.1 – Communication between Heterogeneous Systems

Note, however, the compulsory curly brackets surrounding
SupportedAttributes, which remind us that the constraint is an
object set rather than a constraint by type inclusion (whose syntax
imposes a word beginning with an upper-case letter in round brackets,
see Section 13.3 on page 261).

The AttributeIdAndValue2 type is now informally represented as fol-
lows17:

AttributeIdAndValue2 ::= SEQUENCE {
ident id-at-surname id-at-givenName id-at-countryName ,

value DirectoryString DirectoryString PrintableString }
In mathematical terms, we would say that we operated a projection
of the SupportedAttributes matrix of Figure 15.2 on page 330 on its
row &id and, in parallel, on its row &Type. Using the collection and
extraction notations of Section 15.5 on page 329, we could similarly
define the AttributeIdAndValue2 type as follows:

AttributeIdAndValue2 ::= SEQUENCE {

ident SupportedAttributes.&id,

value SupportedAttributes.&Type }

Even though the latter notation seems slightly more natural, the
AttributeIdAndValue2 type does not fix the initial problem for all that.
Indeed, it is still allowed to choose a different information object (a dif-
ferent column of the matrix) for the information associated with the
ident component as for the information associated with the value com-
ponent. In other words, transmitting the following value is perfectly
valid:

value AttributeIdAndValue2 ::= {

ident id-at-countryName,

value DirectoryString:universalString:"$$Escher$$" }

But the countryName attribute selected by the ident component only
accepts PrintableStrings of at most two characters whereas the trans-
mitted value is typed UniversalString (the value "$$Escher$$" contains
more than two characters and the “$” character does not belong to the
PrintableString type).

17It is only for simplicity’s sake that we do not represent the subtype constraints
on the DirectoryString and PrintableString types.

15 - Information object classes, objects and object sets 345

We now have to indicate, using the dedicated ASN.1 notation called
component relation contraint18, that when an information object (one
of the matrix column) is chosen for the ident component of type
AttributeIdAndValue2, then the same object (column) should be used
for its value component.

This is represented by the at-sign19 “@”, followed by the name of
the first component of the SEQUENCE type (i.e. ident); the symbol and
the component name are placed in curly brackets after the object set
{SupportedAttributes}, which constraints both components:

AttributeIdAndValue3 ::= SEQUENCE {

ident ATTRIBUTE.&id({SupportedAttributes}),

value ATTRIBUTE.&Type({SupportedAttributes}{@ident}) }

In mathematical terms, we would say that this component relation
constraint is equivalent to projecting the matrix on one20 of its columns
(remember each column contains the fields of the same object). The
result of the horizontal projection of the SupportedAttributes matrix
on the &id row (&Type respectively), followed by the vertical projection
on one of its columns could be informally represented by:

val AttributeIdAndValue3 ::= {
ident id-at-countryName ,

value PrintableString:"F" }

It is a value that is represented here informally (and not a type as
in all the previous examples) because the vertical projection @ident oc-
curs at the encoding stage when an information object is chosen. The
AttributeIdAndValue3 type has the advantage of being completely in-
dependent from the attribute whose value is to be changed (hence also
independent from the type of this value).

18This is defined by the gramar production ComponentRelationConstraint on
page 350.

19This notation should not be confused with the meta-notation defined on page
231, which can be used only in comments.

20We could, of course, have equally written:

AttributeIdAndValue4 ::= SEQUENCE {
ident ATTRIBUTE.&id({SupportedAttributes}{@value}),
value ATTRIBUTE.&Type({SupportedAttributes}) }

But it seems more sensible and natural to choose an attribute by its single identifier
rather than by the value that it is given. Besides, one column of the matrix can only be
selected at a time since the &id field is marked UNIQUE. The type AttributeIdAndValue3

is actually equivalent to the type AttributeTypeAndValue of the [X.501] recommenda-
tion; we only did a bit of renaming to improve readability.

346 ASN.1 – Communication between Heterogeneous Systems

An ASN.1 compiler can, of course, employ the data stored in infor-
mation object sets to generate a decoder that would check the validity
of the messages received (which means that, in our case, the decoder
can make sure the value of the value component conforms to the type
referenced by the ident component).

If the object set SupportedAttributes includes an ex-
tension marker21 “...”, then it is dynamically extensi-
ble, i.e. the number of columns together with the hori-
zontal projections ATTRIBUTE.&id({SupportedAttributes}) and
ATTRIBUTE.&Type({SupportedAttributes}) dynamically change (but
the columns that appear before the extension marker cannot be
removed dynamically, for they correspond to information objects that
should be supported whatever the implementation of the protocol
involved).

The component relation constraint @ident is actually the equivalent
of the former mechanism ANY DEFINED BY of ASN.1:1990, removed from
the standard in 1994. In ASN.1:1990, the AttributeIdAndValue3 type
below was written:

AttributeIdAndValue3 ::= SEQUENCE {

ident OBJECT IDENTIFIER,

value ANY DEFINED BY ident }

-- ident | value

-- ==================|============================

-- id-at-surname | DirectoryString

-- id-at-givenName | DirectoryString

-- id-at-countryName | PrintableString (SIZE (2))

But as this notation did not allow the formal specification of the ob-
ject set22 involved (the matrix), the ASN.1:1990 standard recommended
to indicate this information in comments with the inconveniences that
would ensue: a comment is neither formal nor meant to define a stan-
dard; it is not taken into account by compilers23 (even macro instances
were not always used by compilers and were highly un-recommended);

21Such is the case for the [X.501] recommendation, in fact, which de-
fines the object set SupportedAttributes as: SupportedAttributes ATTRIBUTE ::=

{objectClass|aliasedEntryName, ...}.
22At the time, we should have said the ‘set of macro instances’ (see Chapter 16).
23The implementation of the matrix used to be specific to each tool, which limited

the specification portability.

15 - Information object classes, objects and object sets 347

this mechanism is generally static, which does not authorize dynamically
extensible matrices or different matrices in every implementation.

We now focus on the detail of the ASN.1 grammar constructions
that make it possible to extract the information from information object
classes in order to use it in the specification of the data to be transmitted.
This presentation continues in Section 15.8 on page 352, where more
complex examples are tackled.

15.7.2 Reference Manual

Type notation

ObjectClassFieldType → DefinedObjectClass “.” FieldName

FieldName → PrimitiveFieldName “.” · · ·+

PrimitiveFieldName → typefieldreference
| valuefieldreference | valuesetfieldreference
| objectfieldreference | objectsetfieldreference

〈1〉 The first PrimitiveFieldName must be a field of the class referenced
by DefinedObjectClass.
〈2〉 The class name DefinedObjectClass cannot be followed by an actual
parameter list (in curly brackets) before the dot.
〈3〉 If ObjectClassFieldType denotes a type field, a variable-type value
field or a variable-type value set field, this notation defines an open
type (its value set is the set of all the values that can be specified in
ASN.1; it is therefore the equivalent of ASN.1:1990 ANY type, which has
been removed from the standard since ASN.1:1994). It is recommended
to constraint an open type with a constraint using an object set (see
rule 〈20〉 on page 350) ; if the open type is not constrained, a decoder
can only deliver an octet string to the communicating application. This
notation cannot be used directly or indirectly when defining the type of
a value field or of a value set field of another class; it means the type of
a value field or value set field of a class cannot depend on a type field
of another class.
〈4〉 If ObjectClassFieldType denotes a type field, a variable-type value
field or a variable-type value set field, this notation has no determined
tag and cannot be used in a construction where the tags are required
to be distinct (except if it is preceded by a tag explictly inserted by the
specifier or if the module has the AUTOMATIC TAGS clause in its header).

348 ASN.1 – Communication between Heterogeneous Systems

Moreover, this notation cannot be tagged in IMPLICIT mode because the
effective type can be any ASN.1 type (see rules 〈10〉 on page 223, 〈10〉
on page 228 and 〈7〉 on page 238).
〈5〉 If ObjectClassFieldType denotes a fixed-type value field or a fixed-
type value set field, this notation gives the type of the field appearing
in the class definition.
〈6〉 ObjectClassFieldType cannot denote an object field or an object set
field.
〈7〉 If there exists a dotted chain ObjectClassFieldType such that the
first field is in the class being defined, that all the following fields belong
to the class referenced by the previous field and that the last field
belongs to the class being defined, then one of the fields at least must
be marked OPTIONAL or DEFAULT. This rule prevents recursive definition
of a class that would have no object with a finite representation.
〈8〉 ObjectClassFieldType can be constrained by a single value
(production SingleValue on page 261) and by type inclusion (produc-
tionContainedSubtype on page 263). If ObjectClassFieldType is an open
type (see rule 〈3〉 on the preceding page), it can be constrained by a
type (production TypeConstraint on page 352).

Value notation

ObjectClassFieldValue → OpenTypeFieldVal
| FixedTypeFieldVal

〈9〉 If the corresponding ObjectClassFieldType is a type field, a variable-
type value field or a variable-type value set field (see rule 〈2〉 on
page 317), the alternative OpenTypeFieldVal must be used.
〈10〉 If the corresponding ObjectClassFieldType is a fixed-type value field
or a fixed-type value set field, the alternative FixedTypeFieldVal must
be used.

OpenTypeFieldVal → Type “:” Value

〈11〉 OpenTypeFieldVal is equivalent to a value of type ANY in
ASN.1:1990 (see Section 12.8 on page 241 and rule 〈3〉 on the preceding
page).
〈12〉 Value must be of type Type or of a type that is compatible with
Type according to the semantic model of ASN.1 (see Section 9.4 on
page 121).

FixedTypeFieldVal → BuiltinValue
| ReferencedValue

15 - Information object classes, objects and object sets 349

〈13〉 The productions BuiltinValue and ReferencedValue are defined on
page 109.
〈14〉 The value (BuiltinValue or ReferencedValue) must be of the type
specified by the corresponding field in the class definition or of a type
that is compatible with it according to the semantic model of ASN.1
(see Section 9.4 on page 121).

Subtype constraints

Constraint → “(” ConstraintSpec ExceptionSpec “)”

〈15〉 The production ExceptionSpec is defined on page 255. It can be
used only if the object set referenced in a SimpleTableConstraint and in a
ComponentRelationConstraint is a parameter of the current assignment
(see rule 〈3〉 on page 293).

ConstraintSpec → ElementSetSpecs
| GeneralConstraint

GeneralConstraint → UserDefinedConstraint
| TableConstraint

| ContentsConstraint

TableConstraint → SimpleTableConstraint
| ComponentRelationConstraint

〈16〉 A TableConstraint can only be applied to an ObjectClassFieldType
(see next rules) and to the INSTANCE OF type (see 〈5〉 on page 359).

SimpleTableConstraint → ObjectSet

〈17〉 ObjectSet is an object set of the class referenced at the beginning of
the constrained ObjectClassFieldType (see also rule 〈31〉 on page 351).
It necessarily appears in curly brackets (even if it is a reference to an
object set DefinedObjectSet).
〈18〉 The last FieldName of the constrained ObjectClassFieldType is
used for selecting a row in the associated matrix. Indeed, an abstract
table can be associated with an information object or an information
object set; the rows of this table are the fields of the object, and the
columns are the objects considered.
〈19〉 If one of the fields of the information object class references this
very class, the associated table can have an infinity of rows. This is
allowed a priori.

350 ASN.1 – Communication between Heterogeneous Systems

〈20〉 For a type field (see rule 〈2〉 on page 317), the component value is
constrained to conform to one of the types in this row. For a value field,
the component value is constrained to take one of the values in this row.
For a value set field, the component is constrained to take one of the
values in one of the value sets in this row.
〈21〉 The sets selected in the previous rule must be ensured to have at
least one value so that the rules 〈32〉, 〈33〉 and 〈34〉 on the next page are
respected.
〈22〉 If ObjectSet is an extensible object set, the constrained type does
not inherit the extension marker.

ComponentRelationConstraint →
“{” DefinedObjectSet “}” “{” AtNotation “,” · · ·+ “}”

〈23〉 A ComponentRelationConstraint can be applied only to an Object-
ClassFieldType (see on page 347) extracted from a class and included
(not necessarily at the top level) in another constructed type such as
SEQUENCE or SET, that textually contains all the components identified
by the AtNotation (see also rule 〈31〉 on the next page).

AtNotation → “@” ComponentIdList
| “@.” ComponentIdList

〈24〉 The AtNotation can appear only in a SEQUENCE or SET structure. It
enables a component of a structure to depend on the value of another
component of this structure or of a higher level structure.
〈25〉 The AtNotation should not be confused with the meta-notation Ab-
soluteReference of the form “@modulereference.typereference.identifier”
used in a description text outside an ASN.1 module or in comments for
referencing a component of a constructed type (see on page 231).
〈26〉 In the first alternative (the “@” symbol is not followed by a dot),
the parent structure in which the first identifier must be found is the
SEQUENCE, SET or CHOICE type that textually encloses the AtNotation at
the outermost level (examples are given in [ISO8824-3, clause 10.10] and
on page 354).
〈27〉 In the second alternative (the “@” symbol is followed by a dot),
the parent structure in which the first identifier must be found is the
SEQUENCE or SET type that textually encloses the AtNotation at the in-
nermost level (refer to the example for the Authentication-value type
on page 356).

15 - Information object classes, objects and object sets 351

ComponentIdList → identifier “.” · · ·+

〈28〉 If an identifier denotes a component (an alternative respectively) of
a SEQUENCE or SET type (CHOICE type respectively), the next identifier in
the list must be one of those appearing in the component list (alterna-
tive list respectively) of this type.
〈29〉 If an identifier denotes a component that is not of type SEQUENCE,
SET or CHOICE, it must be the last element of the ComponentIdList .
〈30〉 From now on, we call referencing component , a component followed
by an AtNotation in a SEQUENCE or SET type, and referenced component ,
the component pointed at by this AtNotation.
〈31〉 The referencing component and all the referenced components must
be ObjectClassFieldTypes (see on page 347) extracted from the same in-
formation object class. The DefinedObjectSet (in curly brackets) must be
the same in the ComponentRelationConstraints as in the SimpleTable-
Constraints and must be of the same information object class as the one
from which the ObjectClassFieldTypes are extracted.
〈32〉 If the referencing component is marked OPTIONAL or DEFAULT in the
structured type definition and is absent in the value, the Componen-
tRelationConstraint is always satisfied (see rule 〈21〉 on the preceding
page).
〈33〉 If the referenced component is marked OPTIONAL or DEFAULT in the
structured type definition and is absent in the value, this value does not
satisfy the ComponentRelationConstraint unless the referencing compo-
nent is also marked OPTIONAL or DEFAULT in the type definition and is
absent in the value too.
〈34〉 If all the referenced components are present and if the referencing
component is present, the constraint is satisfied only if there exists one
or more objects in the object set such that, for all fields, every refer-
enced component that is followed by a value field takes the value of the
corresponding field in the selected object and every referenced compo-
nent that is followed by a value set field takes one of the values of the
corresponding field in the selected object.
〈35〉 If an ObjectClassFieldType is constrained by one or more Table-
Constraints and if FieldName denotes a type field, a variable-type value
field or a variable-type value set field, there can only be one selected ob-
ject in the object set if one of the referenced components is an identifier
field marked UNIQUE (see rule 〈7〉 on page 318).

352 ASN.1 – Communication between Heterogeneous Systems

TypeConstraint → Type

〈36〉 This subtype constraint applies only on an open type. The only
open type of ASN.1 is ObjectClassFieldType when it denotes a type
field, a variable-type value field or a variable-type value set field (see
rule 〈3〉 on page 347). In that case, the set of values of the constrained
open type is the intersection of the set of values of the open type in-
stance and the set of values of the Type in the constraint.
〈37〉 The production TypeConstraint is syntactically equivalent to the
production ContainedSubtype (see on page 263) where the ε alternative
of the Includes production is retained, but semantically a TypeCon-
straint can only be applied on an open type.
〈38〉 Although the permitted values of the open type are semantically
those of Type, these values are encoded according to the rules associ-
ated with the open type, which implies that they will all be preceded,
either in BER or PER encoding, by a length field (see Sections 18.2.22
on page 412 and 20.6.11 on page 445).

15.8 More complex examples of information ex-
traction

The notation of component relation constraint (denoted by the “@” sym-
bol) is in fact more powerful that the ANY DEFINED BY construction of
ASN.1:1990 already discussed on page 346, because it can link a SEQUENCE

or SET type component to another component defined in a higher-level
structured type but also because several relation constraints can be ap-
plied to the same component if one constraint (that is one vertical pro-
jection of the matrix) is not enough to reference the information unam-
biguously. We shall illustrate this point with a few examples.

When several SEQUENCE, SET, CHOICE, SEQUENCE OF and SET OF types
are nested in one another, the “@” notation should indicate unambigu-
ously the component of a constructed type. To do so, in a dotted chain of
the form “@ident1.ident2.ident3”, ident1 is considered as an identifier
that belongs to the SEQUENCE, SET or CHOICE type of highest level in the
breakdown structure of the considered type assignment; ident2 is then
considered as an identifier appearing in the type associated with ident1

and finally ident3 is an identifier appearing in the type associated with
ident2. If the “@” symbol is followed by a dot “.” as in “@.ident”, the

15 - Information object classes, objects and object sets 353

ident identifier should belong to the first SEQUENCE or SET type24 that
includes this notation at the lowest level.

The type AttributeIdAndValue3 on page 345 can, therefore, be
equally written:

AttributeIdAndValue3 ::= SEQUENCE {

ident ATTRIBUTE.&id({SupportedAttributes}),

value ATTRIBUTE.&Type({SupportedAttributes}{@.ident})}

since the SEQUENCE type includes the definition both at the highest and
lowest levels. The same remark applies on the type:

AttributeIdsAndValues ::= SET OF SEQUENCE {

ident ATTRIBUTE.&id({SupportedAttributes}),

value ATTRIBUTE.&Type({SupportedAttributes}{@.ident})}

since the outermost SET OF type is not taken into account when the “@”
symbol is followed by a dot.

Let us now consider the type:

AttributeValueAssertion ::= SEQUENCE {

type ATTRIBUTE.&Id({SupportedAttributes}),

assertion ATTRIBUTE.&equality-match.&AssertionType

({SupportedAttributes}{@type}) }

in which the string25 ATTRIBUTE.&equality-match.&AssertionType will
point at the type stored in the &AssertionType field of an object of
class MATCHING-RULE, which is in turn stored by the &equality-match

field of an object of class ATTRIBUTE. The AttributeValueAssertion type
will define propositions on the attribute’s value such as: ‘the attribute
identified by type whose value equals value according to the equality
matching-test function associated with this attribute and defined by
ATTRIBUTE.&equality-match’.

24Note that a CHOICE type is not allowed here. Indeed, it is impossible to write
anything like:

CHOICE { alt1 ATTRIBUTE.&id({SupportedAttributes}),
alt2 ATTRIBUTE.&value({SupportedAttributes}{@.alt1})}

because if the alt2 alternative is selected, then the alt1 alternative is not selected so
that its value cannot be used for constraining alt2.

25This string conforms to the grammar production ObjectClassFieldType presented
on page 347.

354 ASN.1 – Communication between Heterogeneous Systems

The AttributeValueAssertion type is used in the item filter definition
for search routines in the X.500 directory:

FilterItem ::= CHOICE {

equality [0] AttributeValueAssertion,

substrings [1] SEQUENCE {

type Attribute.&id({SupportedAttributes}),

strings SEQUENCE OF CHOICE {

initial [0] ATTRIBUTE.&Type

({SupportedAttributes}{@substrings.type}),

any [1] ATTRIBUTE.&Type

({SupportedAttributes}{@substrings.type}),

final [2] ATTRIBUTE.&Type

({SupportedAttributes}{@substrings.type}) }},

greaterOrEqual [2] AttributeValueAssertion,

lessOrEqual [3] AttributeValueAssertion,

present [4] AttributeType,

approximateMatch [5] AttributeValueAssertion,

extensibleMatch [6] MatchingRuleAssertion }

The @substrings.type notation indicates the highest-level type compo-
nent in the substrings alternative of the top-level CHOICE.

These few examples should have convinced the reader of the flexibil-
ity of relation constraints defined with the at-sign “@”. We still have to
demonstrate that several component relation constraints can be applied
to extract a single object of an object set when one relation constraint
is not sufficient to reference the information unambiguously.

For this, let us consider the following type, which allows to change
all the attributes for which the &usage field equals a given value:

Attribute-desc ::= SEQUENCE {

usage ATTRIBUTE.&usage({SupportedAttributes}),

list SEQUENCE OF SEQUENCE {

ident ATTRIBUTE.&id({SupportedAttributes}{@usage}),

value ATTRIBUTE.&Type

({SupportedAttributes}{@usage,@.ident}) }}

We choose the value for the usage component, say userApplications

by default (the &usage field is of the enumerated type AttributeUsage

defined on page 328).

Several objects may store this value in their &usage field; it is actu-
ally the case for the two objects objectClass and aliasedEntryName of
the object set SupportedAttributes (see on page 346) since they should

15 - Information object classes, objects and object sets 355

att-desc Attribute-desc ::= {
usage userApplications userApplications · · · ,

projection @usage

list SEQUENCE OF SEQUENCE { ident id-at-objectClass id-at-aliasedEntryName · · · ,

projection @id

value }}

Figure 15.3: Double projection mechanism of two component relation
constraints

appear in any implementation of the directory service. The component
relation constraint @usage, therefore, does not always select one object
at a time in the SupportedAttributes set (otherwise said, the projection
on the @usage row of the SupportedAttributes matrix may return several
items with the same value). In this first selection of objects, there should
be considered a second selection by the relation constraint @ident, which
necessarily gives one object since the &id field is an identifier field of class
ATTRIBUTE (it is followed by the UNIQUE marker).

This double selection can be represented by Figure 15.3 (remember
that the SupportedAttributes object set is dynamically extensible). So,
a value of Attribute-desc type could be for instance:

att-desc Attribute-desc ::= {

usage userApplications,

list { { ident id-at-objectClass,

value oid },

{ ident id-at-aliasedEntryName,

value distinguishedName }}}

15.9 The pre-defined TYPE-IDENTIFIER class and
INSTANCE OF type

The TYPE-IDENTIFIER class sets up an information association frequently
used in specifications. It is standardized in [ISO8824-2, annexes A and
B] and can, therefore, be directly used within a module as any ASN.1
pre-defined concept.

356 ASN.1 – Communication between Heterogeneous Systems

15.9.1 User’s Guide

The TYPE-IDENTIFIER class is surely one of the simplest of its kind:
it associates a universally-unique object identifier (see Section 10.8 on
page 153) with any ASN.1 type. It is defined with a user-friendly syntax
as follows:

TYPE-IDENTIFIER ::= CLASS {

&id OBJECT IDENTIFIER UNIQUE,

&Type }

WITH SYNTAX {&Type IDENTIFIED BY &id}

This information association by means of a pair 〈object identifier,
ASN.1 type〉 is very often used, particularly to replace the ANY type of
ASN.1:1990 (see Section 12.8 on page 241). In fact, such a model is
necessary each time an ASN.1 specification is ‘gapped’ by data types to
be agreed on when transmitting them. We have used a similar model in
the ATTRIBUTE class defined on page 327 because the type of the value
associated with an attribute depends on this very attribute.

In the Association Control Service Element standard (ACSE
[ISO8650-1]), an object of class TYPE-IDENTIFIER can associate an ASN.1
type with the object identifier of the authentication mechanism used
when establishing the association:

MECHANISM-NAME ::= TYPE-IDENTIFIER

The abstract syntax of an authentication value is determined
by the authentication mechanism using a component relation con-
straint in which the “@.” symbol indicates that the identifier
other-mechanism-name belongs to the type that includes this constraint
at the lowest level, i.e. the SEQUENCE type:

Authentication-value ::= CHOICE {

charstring [0] IMPLICIT GraphicString,

bitstring [1] BIT STRING,

external [2] EXTERNAL,

other [3] IMPLICIT SEQUENCE {

other-mechanism-name MECHANISM-NAME.&id({ObjectSet}),

other-mechanism-value MECHANISM-NAME.&Type

({ObjectSet}{@.other-mechanism-name}) }}

15 - Information object classes, objects and object sets 357

An ASN.1 value referenced in an object of class TYPE-IDENTIFIER

is transmitted using an open type and extracting the information as
indicated in Section 15.6 on page 336:

SEQUENCE { type-id TYPE-IDENTIFIER.&id,

value [0] EXPLICIT TYPE-IDENTIFIER.&Type }

But as such information extractions frequently occur, ASN.1 pro-
vides the adequate pre-defined INSTANCE OF type to achieve them. A
type of the form ‘INSTANCE OF DefinedObjectClass ’ is therefore defined
as follows:

SEQUENCE { type-id DefinedObjectClass.&id,

value [0] EXPLICIT DefinedObjectClass.&Type }

Note the tag in explicit mode26 before the open type of the value

component to make sure that the tags of the components of the SEQUENCE

are always distinct (this value component could otherwise have any tag
when it is allocated a value).

The INSTANCE OF type only extracts information from objects of class
TYPE-IDENTIFIER and it is recommended, as indicated in Section 15.6 on
page 336, to state the object set involved. For this, ASN.1 permits that a
table constraint could be associated with the INSTANCE OF type (although
normally such a constraint can only follow a field extracted from a class).
A type of the form ‘INSTANCE OF DefinedObjectClass ({ObjectSet })’ is
developed in:

SEQUENCE { type-id DefinedObjectClass.&id ({ObjectSet }),
value [0] DefinedObjectClass.&Type

({ObjectSet }{@.type-id}) }
where the component relation constraint @.type-id on the open type of
the component value should be noted. We have here the equivalent of
the ANY DEFINED BY type withdrawn of the ASN.1 standard in 1994, but
with the following noteworthy advantage: the ObjectSet formalizes the
information that was formerly (if ever) indicated in comments within
the module (an example was given on page 346).

The INSTANCE OF type has the same tag 8 of class UNIVERSAL as the
EXTERNAL type (a presentation context negotiation type presented in Sec-
tion 14.1 on page 298). The BER encoding of an INSTANCE OF value is,
therefore, compatible with the BER encoding of an EXTERNAL value that

26The context-specific tag [0] ensures compatibility with the EXTERNAL type (see
Section 14.1 on page 298).

358 ASN.1 – Communication between Heterogeneous Systems

uses only the syntax and data-value components (see Section 18.2.19 on
page 411).

The inter-personal e-mail standard X.420 provides an example
(slightly adapted here) of use of the TYPE-IDENTIFIER class and its as-
sociated INSTANCE OF type to model the parameters and the values of a
part of the message body whose type is not known in advance by the
standard27:

ExtendedBodyPart ::= SEQUENCE {

parameters [0] INSTANCE OF TYPE-IDENTIFIER OPTIONAL,

data INSTANCE OF TYPE-IDENTIFIER }

(CONSTRAINED BY {-- must correspond to the ¶meters --

-- and &data fields of a member of -- IPMBodyPartTable})

15.9.2 Reference Manual

UsefulObjectClassReference → TYPE-IDENTIFIER

| ABSTRACT-SYNTAX

〈1〉 The TYPE-IDENTIFIER class is defined by:

TYPE-IDENTIFIER ::= CLASS {

&id OBJECT IDENTIFIER UNIQUE,

&Type }

WITH SYNTAX { &Type IDENTIFIED BY id }

Type notation

InstanceOfType → INSTANCE OF DefinedObjectClass

〈2〉 This type has tag no. 8 of class UNIVERSAL. It has the same tag as
the EXTERNAL type (see Section 14.1 on page 298).
〈3〉 DefinedObjectClass must be of class TYPE-IDENTIFIER.
〈4〉 To make value definition easier, the INSTANCE OF type is defined using
the following associated type:

SEQUENCE {
type-id DefinedObjectClass.&id,
value [0] DefinedObjectClass.&Type }

27The user-defined constraint introduced by the keywords CONSTRAINED BY is pre-
sented in Section 13.13 on page 294.

15 - Information object classes, objects and object sets 359

〈5〉 The only relevant constraint that can be applied to this type is a
SimpleTableConstraint (see on page 349). In this case, a constraint like
‘INSTANCE OF DefinedObjectClass ({ObjectSet})’ is equivalent to :

SEQUENCE {
type-id DefinedObjectClass.&id ({ObjectSet}),
value [0] EXPLICIT DefinedObjectClass.&Type

({ObjectSet}{@.type-id}) }
that is, it contains a component of type OBJECT IDENTIFIER and a
component of an open type (see rule 〈3〉 on page 347) whose value must
be of the type determined by the object identifier.

Value notation

InstanceOfValue → Value

〈6〉 Value must conform to the SEQUENCE type associated with the
INSTANCE OF type defined in rule 〈4〉 on the preceding page.

15.10 The pre-defined ABSTRACT-SYNTAX class

This class provides a means of linking items of information that are fre-
quently used in specifications. It is standardized in [ISO8824-2, annexes
A and B] and can, therefore, be used directly in a module like any other
pre-defined ASN.1 type.

15.10.1 User’s Guide

In Chapters 2 and 3, we have defined the protocol data units (PDU) of
a specification. Every PDU defines an abstract syntax28.

In Section 3.2 on page 20 (and more particularly on Figure 3.2 on
page 22), we explained that, during the stage of negotiation between the
Application and Presentation layers, the abstract syntax is referenced
by an object identifier (see Section 10.8 on page 153). Even though it
has hardly ever been used in specifications so far, the information object
class ABSTRACT-SYNTAX can model this association of an object identifier
to an abstract syntax or PDU (an ASN.1 type).

28If a specification defines more than one PDU, they can be gathered together in a
CHOICE to constitute a single ASN.1 type, which stands for the abstract syntax.

360 ASN.1 – Communication between Heterogeneous Systems

It is defined by:

ABSTRACT-SYNTAX ::= CLASS {

&id OBJECT IDENTIFIER,

&Type ,

&property BIT STRING {handles-invalid-encodings(0)}

DEFAULT {} }

WITH SYNTAX { &Type IDENTIFIED BY &id

[HAS PROPERTY &property] }

in which the handles-invalid-encodings property indicates that a de-
coder that cannot decode the received data does not treat them as errors
but hands them over ‘as is’ to the receiving application, which will choose
the more appropriate method to take them into account (in other words,
it enables to indicate the Presentation layer not to interrupt the con-
nection but notify the emitting application that an error has occurred
when decoding).

The ASN.1 standard recommends grouping all the objects of class
ABSTRACT-SYNTAX in a module that imports the PDUs from other mod-
ules:

ProtocolName-Abstract-Syntax-Module {iso member-body(2)

f(250) type-org(1) ft(16) asn1-book(9) chapter15(3)

protocol-name(0)}

DEFINITIONS ::= BEGIN

IMPORTS ProtocolName-PDU FROM ProtocolName-Module {iso

member-body(2) f(250) type-org(1) ft(16)

asn1-book(9) chapter15(3) protocol-name(0)

module1(2)};

protocolName-Abstract-Syntax ABSTRACT-SYNTAX ::=

{ProtocolName-PDU IDENTIFIED BY

protocolName-Abstract-Syntax-id}

protocolName-Abstract-Syntax-id OBJECT IDENTIFIER ::=

{iso member-body(2) f(250) type-org(1) ft(16)

asn1-book(9) chapter15(3) protocol-name(0)

abstract-syntax(0)}

protocolName-Abstract-Syntax-descriptor ObjectDescriptor

::= "Abstract syntax of ProtocolName"

protocolName-Transfer-Syntax-id OBJECT IDENTIFIER ::=

{iso member-body(2) f(250) type-org(1) ft(16)

asn1-book(9) chapter15(3) protocol-name(0)

transfer-syntax(1)}

protocolName-Transfer-Syntax-descriptor ObjectDescriptor

::= "Transfer syntax of ProtocolName"

END

15 - Information object classes, objects and object sets 361

Of course, the information contained in the
protocolName-Abstract-Syntax object can be used by ASN.1 com-
pilers (before 1994, this information was indicated in comments in
the root module of the specification). Numerous examples of the
ABSTRACT-SYNTAX class can be found in the X.500 directory recommen-
dation series.

An information object of class ABSTRACT-SYNTAX is often parame-
terized (see Chapter 17) because constraint boundaries appearing in
PDU(s) are fixed by some protocol specializations for example. In
this case, every protocol specialization defines a (non-parameterized)
ABSTRACT-SYNTAX class, which sets up the parameters of the ‘generic ab-
stract syntax’. If these subtyping boundaries are fixed only when imple-
menting the protocol, they are called parameters of the abstract syntax ;
they will be discussed further in Section 17.3 on page 389.

The ABSTRACT-SYNTAX class is used in the type definition of the Pre-
sentation layer data [ISO8823-1]:

PDV-list ::= SEQUENCE {

transfer-syntax-name

Transfer-syntax-name OPTIONAL,

presentation-context-identifier

Presentation-context-identifier,

presentation-data-values CHOICE {

single-ASN1-type [0] ABSTRACT-SYNTAX.&Type

(CONSTRAINED BY {-- Type which corresponds to --

-- the presentation context identifier --}),

octet-aligned [1] IMPLICIT OCTET STRING,

arbitrary [2] IMPLICIT BIT STRING }}

presentation-context-identifier is a number allocated to each presen-
tation context: it is a unique integer for every presentation connection,
which avoids the (sometimes expensive) transfer of an object identifier.
The open type ABSTRACT-SYNTAX.&Type recalls that the single-ASN1-type

alternative encodes values of an abstract syntax specified in ASN.1 and
conforms to the negotiated presentation context identifier (the user-
defined constraint introduced by CONSTRAINED BY was described in Sec-
tion 13.13 on page 294).

362 ASN.1 – Communication between Heterogeneous Systems

15.10.2 Reference Manual

UsefulObjectClassReference → TYPE-IDENTIFIER

| ABSTRACT-SYNTAX

〈1〉 The ABSTRACT-SYNTAX class is defined by:
ABSTRACT-SYNTAX ::= CLASS {

&id OBJECT IDENTIFIER,

&Type,

&property BIT STRING { handles-invalid-encodings(0)a}
DEFAULT {} }

WITH SYNTAX { &Type IDENTIFIED BY &id

[HAS PROPERTY &property] }
aThis property indicates that invalid encodings are not treated as errors

when decoding so that the decision is up to the application. In an OSI environ-
ment, this property prevents the Presentation layer to interrupt the connection
by rejecting an invalid encoding.

〈2〉 The ABSTRACT-SYNTAX class was designed to reference types that are
complete protocol data units or PDU (such a type is typically the CHOICE

of the messages that the application can exchange); the PDU values are
generally embedded in a value of type EMBEDDED PDV or EXTERNAL (see
Chapter 14) of some lower-level protocol.
〈3〉 It is recommended that, in the context of a given specification, all
the objects of class ABSTRACT-SYNTAX should be gathered in a dedicated
module.

Chapter 16

Enough to read macros

Contents

16.1 Historical background 364

16.2 Why macros? . 364

16.3 General syntax of a macro 365

16.4 First example: complex numbers 368

16.5 Second example: the macro OPERATION of ROSE 371

16.6 Main (and major!) disadvantages of macros 373

16.7 Macro substitutes since 1994 374

They came to the conclusion that syntax
was a fantasy and grammar an illusion.
Besides, new rhetorics at the time announced
that one should write as one speaks, and that
all would be for the best provided one had
experienced and observed.

Gustave Flaubert, Bouvard and Pécuchet.

If this chapter has not been entitled ‘All about macros’, it was quite
deliberately so, for we do not aim at describing how to write macros.
We would rather help the reader to understand macros that may crop
up in various standards and thereby contribute to their updating to the
ASN.1:1994/97 standard.

Indeed, the concept of macro itself is not mentioned in the
ASN.1:1997 standard any more; it has been replaced since 1994 by the

364 ASN.1 – Communication between Heterogeneous Systems

information object classes and information objects presented in Chap-
ter 15. For these reasons, this chapter has no section called ‘Reference
Manual’ that would have described exhaustively the notion.

16.1 Historical background

At the time ASN.1 still had the name ‘Recommendation X.409’, the
remote operation service element (that would become later ROSE and
be moved to the X.200 recommendation series) was an integral part
of the X.409 recommendation. The ROSE working group designed the
concept of OPERATION as a general mechanism for invoking the execution
of an operation on a remote system and receive the result or an error
message; this mechanism was introduced in the X.409 recommendation
as a new type constructor.

In 1983, as explained in the history on page 61, the X.409 recom-
mendation was being revised at ISO in view of its adoption. As the ISO
working group did not fully grasp why a concept of operation would
have to be included in an abstract notation, they refused this addition.

The opinions of the two organizations could have diverged and enden
in two separate standard texts, one for CCITT and another for ISO,
but CCITT did not accept the principle and proposed a general macro
notation thus presented in [X.409, clause 4.3]: “it is occasionally useful
to define non standard type and/or value notation for a particular data
type. Such notation is defined by means of a macro. [...] The body of
a macro specifies the desired non-standard notation using BNF. Thus
the body comprises a series of productions. The first production specifies
the non-standard type notation, the second specifies the non-standard
value-notation, and the remaining productions define any non-terminals
introduced by the first two productions”.

16.2 Why macros?

A macro could, with its own notation, capture semantic information
that would be impossible to specify in ASN.1 and provide the same
functionality as the information objects do in a more formal way (see
Chapter 15).

Using all the power of the Backus-Naur Form (BNF), a macro defines
a new type notation and a new value notation, whereby they offer new

16 - Enough to read macros 365

degrees of liberty to the specifier since they allow the specifier to write,
within an ASN.1 module, type or value definitions in any computing
language’s specific syntax for instance. The basic principles of ASN.1
remain unchanged: a type is a set of values; a value is still governed
by a type. Besides, macros1 do not extend types or values that can
be defined in ASN.1 but offer instead a notation more appropriate to a
specific application domain (like the X.400 email or the X.500 directory,
for example).

A macro cannot be used to specify a PDU since it is impossible
to access its internal elements but, as we shall see shortly, it enables to
constrain (‘parameterize’) a PDU containing ‘gaps’ to be filled according
to the specific needs of communicating applications.

16.3 General syntax of a macro

A macro is defined by two characteristics:

• a new type notation (as a constrained collection of one or several
types that can be defined in ASN.1 without macros), and

• a new value notation for this type,

that is, two grammars, whatever their complexity, plus an ASN.1 defi-
nition, if needed, to specify the macro’s semantics.

Since a macro extends the ASN.1 grammar, its name should respect
the same lexical rules as ASN.1 keywords, i.e. consist only of capital
letters2.

A macro definition conforms to the framwork below, which uses the
keywords MACRO, BEGIN, END, TYPE NOTATION and VALUE NOTATION:

MACRO-NAME MACRO ::=

BEGIN

TYPE NOTATION ::= -- type syntax --

VALUE NOTATION ::= -- value syntax --

-- grammatical productions used for defining

-- the type syntax and the value syntax

END

1In the rest of this chapter, we will talk about ‘macro definition’ and ‘macro
instance definition’.

2This convention has been kept for denoting information object classes (see Chap-
ter 15).

366 ASN.1 – Communication between Heterogeneous Systems

If the macro notation includes
the following syntactic entity (in
which the reserved keywords are un-
derlined)

then the specifier should write
at the same place in the macro
instance definition:

"text" text (no double quotes)
string any string made of the characters

“A” to “Z”, “a” to “z”, “0” to “9”,
“:”, “=”, “,”, “{”, “}”, “<”, “.”, “(”,
“)”, “[”, “]”, “-”, “’”, “"”.
N.B.: this character set is more
restricted than that now used in
ASN.1:1997 (see footnote 1 on
page 100).

identifier an identifier (word beginning with a
lower-case letter)

number an integer (non negative!)
empty nothing

type a type reference or the expression of
an ASN.1 type (i.e. anything that
may appear after the “::=” symbol
in a type assignment)

type(X) where X is a typereference
(word beginning with an upper-case
letter, see on page 103)

an ASN.1 type called X in the macro
instance

value(type-expression) (such a syn-
tactic entity may appear several
times in a macro definition)

an ASN.1 value conform to the
ASN.1 type indicated in round
brackets

value(x X) where x is a word be-
ginning with a lower-case letter in
X.208:1990 and by an upper-case
letter in ISO 8824:1988, and where
X is a typereference (word beginning
with an upper-case letter, see on
page 103)

an ASN.1 value conform to the
ASN.1 type locally referenced by X

in this macro instance; this value
will be called x in the macro instance

.../...

Table 16.1: Syntactic entities used in macro definitions

16 - Enough to read macros 367

If the macro notation includes
the following syntactic entity (in
which the reserved keywords are un-
derlined)

then the specifier should write
at the same place in the macro
instance definition:

.../...
value(VALUE X) (such a syntactic en-
tity must appear only once per
macro definition)

an ASN.1 value returned by the
macro instance (e.g. when referenc-
ing the macro in an ANY DEFINED BY

clause); if this value has to be en-
coded, it is the X type that must be
taken into account

<x type-expression ::=

value-expression>

definitions in angles “<” and “>” do
not correspond to a syntax definition
but associate semantics described in
basic ASN.1 notation (i.e. with-
out macros) with some elements of
the macro; these are definitions of
ASN.1 types or values that can be
used in local references to the macro
instance (such as x and X in the pre-
vious syntactic entities)

<VALUE type-expression ::=

value-expression> appearing
anywhere in the macro definition

embedded definition which gives
ASN.1 semantics to the value
returned by the macro in-
stance: it is a value of type
type-expression that is written as a
value-expression (type-expression
and value-expression use local
references like x and X above)

Table 16.2: Syntactic entities used in macro definitions (continued)

368 ASN.1 – Communication between Heterogeneous Systems

A macro definition can be interpreted as a form to be filled in that
includes directions depending on what has been inserted (“if the word
XYZ was inserted then please go to rule Abc”). The grammatical pro-
ductions have names that begin with an upper-case letter and they are
separated by the “|” symbol. They may also use the particular keywords
and syntactic entities3 of Table 16.1 on page 366, that will be explained
and illustrated further on.

16.4 First example: complex numbers

We propose a macro for defining complex number according to a notation
that with is close to the mathematical formalism (x+ iy):

COMPLEX MACRO ::=

BEGIN

TYPE NOTATION ::= "Re" "=" type(ReType) ","

"Im" "=" type(ImType)

VALUE NOTATION ::= value(ReValue ReType) "+"

value(ImValue ImType) "i"

<VALUE SEQUENCE { real-p ReType,

imaginary-p ImType} ::=

{ real-p ReValue,

imaginary-p ImValue }>

END

After TYPE NOTATION, we find the new type notation provided by our
COMPLEX macro: every instance of this macro should be denoted by the
word Re, followed by the “=” symbol, and the ASN.1 description of the
type of the real part of the complex number (this type is stored in the
‘local variable’ ReType), and after a comma, the word Im, the “=” symbol
and the ASN.1 type description of the imaginary part (stored in the
local variable ImType).

The VALUE NOTATION clause defines a new value notation offered by
this macro: in every instance of this macro, we indicate, after the “::=”
symbol, an ASN.1 value conform to the type ReType (this value is stored
in the local variable ReValue), then the “+” symbol, followed by the
imaginary part of the complex number as an ASN.1 value conform to
the type ImType (this value is stored in the local variable ImValue) and
we terminate by the “i” character.

3We call ‘syntactic entity’ a series a words or symbols that constitutes a semantic
item in ASN.1.

16 - Enough to read macros 369

The following example gives a complex number whose real and imag-
inary parts are integers:

c1 COMPLEX

Re = INTEGER,

Im = INTEGER ::=

5 + 3 i

and the next illustrates the case where imaginary and real parts are
ASN.1 real numbers4:

c2 COMPLEX

Re = REAL,

Im = REAL ::=

{56,10,0} + {3561,10,-3} i

c1 and c2 are value instances of the COMPLEX macro.

If several complex numbers, with real and imaginary parts of REAL

type for every one of them need to be defined, the type definition can
be factorized5:

REAL-COMPLEX ::= COMPLEX

Re = REAL,

Im = REAL

Note that we have here the equivalent of a parameterized type, which
could be written COMPLEX{REAL,REAL} if we used the parameterization
introduced in ASN.1 in 1994 (see Chapter 17). Nevertheless, because
this macro is not delimited (by the famous and popular curly brackets
of ASN.1), it is difficult for a parser to handle it. REAL-COMPLEX is a type
instance of the COMPLEX macro. We may therefore use REAL-COMPLEX as
if it were some new ASN.1 primitive type:

c2 REAL-COMPLEX ::= {56,10,0} + {3561,10,-3} i

The definition in angles “<” and “>” indicates how the new type
and value notations introduced with our macro should be interpreted in
‘pure’ ASN.1.

4Since macros have disappeared from the standard in 1994, we adopt here the
obsolete ASN.1:1990 syntax of real values, i.e. without the identifiers mantissa, base
and exponent.

5No example of macros was given in the ASN.1:1990 standard but it was only
mentioned that a type notation defined by a macro could be used each time an
ASN.1 type was expected and that a value notation based on a macro could appear
each time a value was expected.

370 ASN.1 – Communication between Heterogeneous Systems

Hence the macro instance c2 previously defined is equivalent to the
definition:

c2 SEQUENCE { real-p REAL,

imaginary-p REAL } ::=

{ real-p {56,10,0},

imaginary-p {3561,10,-3} }

This embedded definition also indicates that, because of the key-
word VALUE, the value returned by the macro instance c2 is {real-p
{56,10,0}, imaginary-p {3561,10,-3}}, that is to say if we define the
(not-so-common!) type:

Addition ::= SEQUENCE {

complex1 COMPLEX Re=INTEGER, Im=INTEGER,

complex2 REAL-COMPLEX }

the value6:

result Addition ::= {

complex1 5 + 3 i,

complex2 {56,10,0} + {3561,10,-3} i}

is equivalent to:

result SEQUENCE {

complex1 SEQUENCE { real-p INTEGER,

imaginary-p INTEGER},

complex2 SEQUENCE { real-p REAL,

imaginary-p REAL}} ::= {

complex1 { real-p 5,

imaginary-p 3 },

complex2 { real-p {56,10,0},

imaginary-p {3561,10,-3} }}

The type specified in the embedded definition in angles is the one
that is going to be used when encoding the value returned by the
macro. In our case, the value returned by instances of the COMPLEX macro
are encoded according to the type SEQUENCE {real-p REAL, imaginary-p

REAL}.
Unfortunately, an embedded definition containing the keyword VALUE

does not systematically appear in all macro definitions (it is even the
case for macro definitions that appear in standard texts!) and it is up

6Note that is not possible to associate the previously defined values c1 and c2 with
the identifiers complex1 and complex2 because the expected values must respect the
value notation of the COMPLEX macro.

16 - Enough to read macros 371

to the specifier to understand the hidden semantics of the macro to be
instanced. Moreover, the absence of an embedded definition between
angles makes it impossible for ASN.1 compilers to deal with macros in
all their generality.

16.5 Second example: the macro OPERATION of
ROSE

Macros have historically resulted from the definition of the Remote Op-
eration Service Element ROSE [ISO9072-2] presented on page 80. The
first macro defined in this standard was the OPERATION macro for which
every instance defines information related to an operation that should
be remotely executed: the argument type, the result type, the linked
operations if any, errors to be returned and its identification number.

As we shall see, the OPERATION macro definition7 calls for many syn-
tactic entities defined in Table 16.1 on page 366. It does not contain,
however, any definition in angles “<” and “>”; the value returned by
such a macro instance is either an integer (local identification) or an
object identifier (global identification):

OPERATION MACRO ::=

BEGIN

TYPE NOTATION ::= Argument Result Errors

LinkedOperations

VALUE NOTATION ::= value (VALUE

CHOICE { localValue INTEGER,

globalValue OBJECT IDENTIFIER })

Argument ::= "ARGUMENT" NamedType | empty

Result ::= "RESULT" ResultType | empty

Errors ::= "ERRORS" "{" ErrorNames "}" | empty

LinkedOperations ::=

"LINKED" "{" LinkedOperationNames "}"

| empty

ResultType ::= NamedType | empty

NamedType ::= identifier type | type

ErrorNames ::= ErrorList | empty

ErrorList ::= Error | ErrorList "," Error

Error ::= value(ERROR) | type

LinkedOperationNames ::= OperationList | empty

7This definition calls another macro named ERROR whose definition is not repro-
duced here.

372 ASN.1 – Communication between Heterogeneous Systems

OperationList ::= Operation

| OperationList "," Operation

Operation ::= value(OPERATION) | type

END

The operation that returns a subscriber’s name according to its
phone number could be specified by the following macro instance:

get-subscriber-name OPERATION

ARGUMENT NumericString (SIZE (10))

RESULT IA5String

ERRORS {unknown, db-unavailable}
::= localValue:1

where we have used the alternative empty of the production
LinkedOperations since there is no linked operation. Remember that
a macro is quite like a form with gaps to fill in: if the production
Argument is being applied, then we write the word ‘ARGUMENT’, and go
to the production NamedType...

As mentioned already, a macro and its instances collect information
that ‘pure’ ASN.1 cannot represent, but it cannot be encoded. If an
application is asked to execute an operation, we use the following type
whose values will contain the code8 of an operation and its argument:

Invoke ::= SEQUENCE {
opcode OPERATION,

argument ANY DEFINED BY opcode }
The component argument is of the type indicated after the word
‘ARGUMENT’ in the macro instance that returns the value opcode9. As
a result, for the get-subscriber-name instance that returns the value
localValue:1, the argument component has the type NumericString

(SIZE (10)).

This last sentence “whose component argument is of the type indicated
after the word ‘ARGUMENT’ in the macro instance which returns the value
opcode ” is obviously all but formal in the Invoke type (at best is it
indicated in comments or in a textual part of the standard) and it is,

8It is actually such an abusive use of an opcode component of type CHOICE (the
type of the values returned by the OPERATION macro) in the ANY DEFINED BY type that
has lead the standard designers to tolerate this practice since 1990 (see History on
page 63) and to generalize it in ASN.1:1994 (see rule 〈7〉 on page 318).

9The type of the component opcode is the one indicated after the keyword VALUE

in the macro definition, which means that for the BER encoding, this type adopts
either the tag of class UNIVERSAL of the INTEGER type or that of the OBJECT IDENTIFIER

type.

16 - Enough to read macros 373

therefore, impossible to make use of such links automatically in an ASN.1
compiler unless these were implemented by hand.

The inconvenience of the ANY DEFINED BY type was already mentioned
in Section 12.8 on page 241. In particular, we have shown that an asso-
ciation table represented by the ANY DEFINED BY type could be indicated
at the beginning of the module. The other possibility for representing
this table is a list of macro instances defined in the module. Still, noth-
ing formally specifies whether all these instances or only some of them
can be used. The information object sets introduced in 1994 and pre-
sented in Section 15.5 on page 329 solve the problem and can be directly
treated by compilers.

16.6 Main (and major!) disadvantages of
macros

In addition to the ANY type, macro instances are one of the historical
mistakes of ASN.1, which was corrected in 1994. Their numerous disad-
vantages induced many specifiers to use them abusively or erroneously.
At worst did they refuse to use ASN.1, forgetting many of its strong
points.

First, macros provide all the flexibility offered by the BNF notation
and potentially allow the specifiers to rewrite all the ASN.1 grammar
without making clear what they are allowed to do or where not to venture
lest it produces macro definitions that cannot be parsed by compilers.
Moreover, the standard text was itself ambiguous and included bugs,
which were the subject of numerous defect reports. [Ste93] gives the
following macro (conform to ASN.1:1988):

VORACIOUS MACRO ::=

BEGIN

TYPE NOTATION ::= Eat

VALUE NOTATION ::= empty

Eat ::= "END" | "MACRO" | EatSomething Eat

EatSomething ::= type | identifier | number

| Keyword | Special

Keyword ::= "NULL" | "TRUE" | "FALSE"

| "PLUS-INFINITY" | "MINUS-INFINITY"

Special ::= "::=" | "," | "{" | "}" | "." | "(" | ")"

| "’" string "’B" | "’" string "’H" | """" string """"

END

374 ASN.1 – Communication between Heterogeneous Systems

whose instances have the disastrous behavior of consuming whatever is
found until the next macro definition (or the end of the module)!

Second, macro definitions did not have to appear before their in-
stances. If a compiler was bound to treat them in their full generality,
the parser had to be dynamically extensible10 so that new grammar rules
can be added to it. But, since macro instances were not delimited (not
even by the so very popular curly brackets, which can be found any-
where else in ASN.1!), it proved impossible to treat them automatically
if the macro definitions did not appear systematically before their use.

Besides, unlimited syntactic elements prevent from producing effi-
cient parsers since it makes error recovery impossible [ASU86]. Many
compilers, therefore, supported the most frequently used macro defini-
tions (in particular, those of ROSE [ISO9072-2]), which were directly
implemented within the parser11.

Finally, words used in macros (such as ARGUMENT, RESULT...) had no
formal semantics since the macro specifier was free to write a completely
new grammar. As a consequence, it was impossible to use these informal
semantic links when automatically generating encoders and decoders.
The only link was restricted to the ANY DEFINED BY type, as formally
exposed. This link was still restricted at the level of only one SEQUENCE

or SET type, and it could not be set between distinct parts of a given
PDU (all this has been possible since 1994 as explained in Section 15.8
on page 352).

16.7 Macro substitutes since 1994

Depending on the context where it is used, a macro definition should
not systematically be replaced by an information object class.

If a macro aimed rather at providing a particular form (as in Fig-
ure 15.1 on page 311) that the communicating application designer
would fill in with information specific to its application domain (see

10Refer on this point to [Rin95] who produced a parser by a clever use of functional
programming. The few restrictions imposed by the author on macro usage clearly
show that these cannot be supported by any ASN.1 compiler in their generality.

11Even though they bear the same name, ASN.1 macros have nothing in common
with macros of the C language, which only define a textual substitution operated by
the lexical analyzer using a pre-processor and impose no changes to the parser (see
Figure 22.1 on page 464).

16 - Enough to read macros 375

the OPERATION macro of ROSE on page 371 or the ATTRIBUTE informa-
tion object class of the X.500 directory on page 327), it is replaced by an
information object class definition (see Chapter 15) with which is asso-
ciated a user-friendly syntax (introduced by the keywords WITH SYNTAX)
accordingly defined.

The translation of macro instances into information objects is merely
a matter of nesting the macro instance body in curly brackets, slightly
shifting the “::=” symbol and changing the comma for a vertical bar “|”
in some lists (see migration of ROSE macros in [ISO13712-1, annex C]);
the information objects can then be grouped in an object set (generally
dynamically extensible).

If the macro is the equivalent of a parameterized type like the SIGNED

macro of recommendation [X.509]:

SIGNED MACRO ::=

BEGIN

TYPE NOTATION ::= type(ToBeSigned)

VALUE NOTATION ::= value(VALUE SEQUENCE {

ToBeSigned,

AlgorithmIdentifier, -- of the algorithm used

-- to generate the signature

ENCRYPTED OCTET STRING -- where the octet string

-- is the result of the hashing of the value of

-- "ToBeSigned" -- })

END

it should be replaced by a parameterized type (or a parameterized value,
see Chapter 17):

SIGNED{ToBeSigned} ::= SEQUENCE {

toBeSigned ToBeSigned,

COMPONENTS OF SIGNATURE{ToBeSigned} }

If the macro specifies constraints that cannot be formalized in ASN.1
like the ENCRYPTED macro of recommendation [X.509]:

ENCRYPTED MACRO ::=

BEGIN

TYPE NOTATION ::= type(ToBeEnciphered)

VALUE NOTATION ::= value (VALUE BIT STRING

-- the value of the bit string is generated by

-- taking the octets which form the complete

-- encoding (using the ASN.1 BER) of the value

-- of the ToBeEnciphered type and applying an

-- encipherment procedure to those octets --)

END

376 ASN.1 – Communication between Heterogeneous Systems

it is replaced by a user-defined constraint introduced by the keywords
CONSTRAINED BY (see Section 13.13 on page 294).

The annex defining the macro notation was permanently removed
from the ASN.1 standard in its 1997 edition.

Chapter 17

Parameterization

Contents

17.1 Basics of parameterization 377

17.2 Parameters and parameterized assignments 379

17.3 Parameters of the abstract syntax 389

Abstraction itself cannot be separated
from generalization.

Armand Cuvillier, Dictionnary of
philosophical language.

The various entities that can be specified in ASN.1 have been exposed in
the previous chapters of this Reference Manual. We now have to show
how our specifications can be improved by being made more compact
and more flexible. We also demonstrate in which respect parameters can
be excellent substitutes for macros and ANY types, which are no longer
part of the standard since 1994.

17.1 Basics of parameterization

In ASN.1, parameters are equivalent to parameters of functions in com-
puting languages1. And similarly as a computing program can be gener-
alized by parameterizing a function to apply it to different arguments, an

1Or equivalent to bound variables of λ-calculus for those into a more theoretical
approach...

378 ASN.1 – Communication between Heterogeneous Systems

ASN.1 specification can be generalized by parameterizing assignments
to be applied to different actual parameters. All ASN.1 concepts (types,
values, value sets, information object classes, objects and object sets)
can be parameterized and the parameter itself can be one of those six
concepts.

Several reasons may incline a specifier to parameterize some defini-
tions.

First, the specification can have several structurally identical defini-
tions, for example, the two following types, which model coordinates in
a plan:

Pair1 ::= SEQUENCE { x INTEGER,

y INTEGER }
Pair2 ::= SEQUENCE { x REAL,

y REAL }

In such a case, the specifier can group them in a single definition, which
is parameterized by the coordinates’ type to make the specification more
compact and easily generalizable.

Second, the specifier can leave gaps in the generic specification
because it will be re-used and generalized by other working groups.
Hence parameters can advantageously replace erroneous uses of the now-
obsolete ANY type (or even abusive use of the OCTET STRING type in some
RFCs of the Internet). The parameter value is fixed in a functional
profile2 or in an international standardized profile3.

Finally, some specifications may include parameters specific to par-
ticular implementations (frequently for subtype constraint boundaries)

2Some very generic standards sometimes offer a great variety of options (choice
between several service elements, parameters...). But it is difficult to dictate that
the implementations of these standards should include all the options that can be
combined in very different ways. A group of application designers, an industrial
consortium, a regional organization or a national standardization organization can
therefore produce a functional profile to restrict this variety.

3An international standardized profile (ISP) is a functional profile produced at an
international level by ISO. It can harmonize local functional profiles to improve inter-
working between different implementations. Before standardization, an ISP should
go through all the states of an international standard (see on page 55 and following).

17 - Parameterization 379

and it is always annoying to limit a standard or an international recom-
mendation to today’s technical restrictions. Such parameters are docu-
mented in a protocol instance compliance statement 4 (PICS). These are
called parameters of the abstract syntax.

Parameters have been standardized since 1994 in Part 4 of the ASN.1
standard [ISO8824-4].

Before going further, we define a few vocabulary points: we call for-
mal parameter , a ‘gap’ left by the specifier in a definition; it is equivalent
to the expressions parameter and dummy reference in the standard text.
Similarly, an actual parameter is an instance of a formal parameter; it
is usually called argument in programming languages.

17.2 Parameters and parameterized assign-
ments

17.2.1 User’s Guide

The list of formal parameters is denoted in curly brackets (but how
could it be otherwise?!) right after the assignment name; the parameters
are then used on the right-hand part (after the “::=” symbol) of the
definition as if they were references of types, values, etc.

The [X.520] directory service defines a type where the maximum
length of each character string type is parameterized as follows:

DirectoryString{INTEGER:maxSize} ::= CHOICE {

teletexString TeletexString (SIZE (1..maxSize)),

printableString PrintableString (SIZE (1..maxSize)),

universalString UniversalString (SIZE (1..maxSize)),

bmpString BMPString (SIZE (1..maxSize)),

utf8String UTF8String (SIZE (1..maxSize)) }

The parameter maxSize begins with a lower-case letter and is governed
by the INTEGER type, so it represents a value of this type.

To determine the category of a parameter from its name and its
governor if it exists, we can refer to Table 17.1 on the next page. When
compared with Table 15.1 on page 314, it shows that the rules are similar

4A protocol instance compliance statement (PICS) details in a table the choices
made by a manufacturer for a particular implementation on its specific equipment.
We find there additive functionalities compared to those imposed by the protocol
specification as well as the variation interval of the parameters of the abstract syntax.

380 ASN.1 – Communication between Heterogeneous Systems

If the governor is and if the parameter name then the parameter is

absent begins with an upper-case letter a type
a type begins with an lower-case letter a value
a type begins with an upper-case letter a value set
absent is entirely in upper-case letters a class (or a type)

a class name begins with an lower-case letter an object
a class name begins with an upper-case letter an object set

Table 17.1: The different categories of parameters and governors

to those which determine the category of an information object class
field.

To use5 the parameterized type DirectoryString previously defined,
we attribute a value to its maxSize parameter:

SubstringAssertion ::= SEQUENCE OF CHOICE {

initial [0] DirectoryString{ub-match},

any [1] DirectoryString{ub-match},

final [2] DirectoryString{ub-match} }

ub-match INTEGER ::= 128

ub-match is an actual parameter since it appears only on the right-hand
side of the SubstringAssertion assignment.

The application of the actual parameter ub-match to the parame-
terized type DirectoryString amounts to substituting ub-match for all
the occurrences of the actual parameter maxSize, which implies that the
expression DirectoryString{ub-match} is strictly equivalent to:

CHOICE {

teletexString TeletexString (SIZE (1..ub-match)),

printableString PrintableString (SIZE (1..ub-match)),

universalString UniversalString (SIZE (1..ub-match)),

bmpString BMPString (SIZE (1..ub-match)),

utf8String UTF8String (SIZE (1..ub-match)) }

If the SubstringAssertion type should be made generic, it needs to
be parameterized too:

SubstringAssertion{INTEGER:ub-match} ::= SEQUENCE OF

CHOICE { initial [0] DirectoryString{ub-match},

any [1] DirectoryString{ub-match},

final [2] DirectoryString{ub-match} }

5A parameterized type is only taken into account by a compiler to produce the
associated encoding and decoding functions if all its parameters are allocated.

17 - Parameterization 381

ub-match is then a formal parameter since it appears at the left-hand
side of the assignment. This formal parameter is ‘propagated’ to the
DirectoryString type as an actual parameter (instance of its formal
parameter maxSize).

The scope of a formal parameter is limited to the right-hand side
of the definition where it occurs so that it is possible (and even recom-
mended when parameters are propagated) to use the same parameter
name in several assignments. Moreover, within its scope a parameter
takes precedence over any other reference that would have the same
name; for the following example, the type T is not taken into account by
the parameterized List type (the parameter T wins over):

T ::= INTEGER

List{T} ::= SEQUENCE OF T

If a parameter that is a type appears in a SEQUENCE, SET or CHOICE

type where distinct tags are required (see rules 〈14〉 on page 224, 〈10〉 on
page 228 and 〈9〉 on page 238), it will have to be tagged by the specifier
unless the module includes the AUTOMATIC TAGS clause in its header:

Choice{T} ::= CHOICE { a [0] T,

b INTEGER }

Structure{T} ::= SEQUENCE { a INTEGER,

b [0] T OPTIONAL,

c INTEGER }

Indeed, if such a parameter is assigned, any ASN.1 type can poten-
tially be substituted to it (and therefore any tag). We find here again
the notion of open type mentioned on page 315 when extracting a type
field from an information object class.

For the same reason, a parameter that is a type should necessarily be
tagged in EXPLICIT mode (see rule 〈6〉 on page 216) so that its instance
tag could be encoded and the decoder could decode the value according
to its type (in BER).

A parameter that is a type can be the governor of a parameter that
is a value or a value set. This enables parameterizing the default type
and default value of a component of a SEQUENCE or SET type, as in:

GeneralForm{T, T:val} ::= SEQUENCE {

info T DEFAULT val,

comments IA5String }

382 ASN.1 – Communication between Heterogeneous Systems

A specialisation of this type could be written:

Form ::= GeneralForm{BOOLEAN, TRUE}

which is equivalent to the type:

Form ::= SEQUENCE { info BOOLEAN DEFAULT TRUE,

comments IA5String }

In the same manner as what we did for a type, a parameterized value
is given by:

pariTierce{INTEGER:first, INTEGER:second,

INTEGER:third} SEQUENCE OF INTEGER ::=

{ first, second, third }

When a definition includes several parameters, it can prove better
to use a single parameter given by an information object (see Chapter
15) that collects all the parameters6:

MESSAGE-PARAMETERS ::= CLASS {

&max-priority-level INTEGER,

&max-message-buffer-size INTEGER,

&max-reference-buffer-size INTEGER }

WITH SYNTAX {

MAXIMUM PRIORITY &max-priority-level

MAXIMUM MESSAGE BUFFER &max-message-buffer-size

MAXIMUM REFERENCE BUFFER &max-reference-buffer-size }

Message-PDU{MESSAGE-PARAMETERS:param} ::= SEQUENCE {

priority INTEGER (0..param.&max-priority-level

!Exception:priority),

message UTF8String (SIZE

(0..param.&max-message-buffer-size)

!Exception:message),

comments UTF8String (SIZE

(0..param.&max-reference-buffer-size)

!Exception:comments) }

Exception ::= ENUMERATED {priority(0), message(1),

comments(2), ...}

Numerous examples7 of parameterized references are given in
[ISO8824-4, annex A]. The last edition of the ROSE standard

6The exception marker “!” is defined on page 247.
7In our section about subtype constraints introduced by the keywords CONSTRAINED

BY, we also presented an example for these parameters (see on page 295).

17 - Parameterization 383

[ISO13712-1] constitues an excellent real-world example of use of pa-
rameters from which the following two examples are extracted:

Forward{OPERATION:OperationSet} OPERATION ::=

{ OperationSet |

OperationSet.&Linked.&Linked |

OperationSet.&Linked.&Linked.&Linked.&Linked }

Reverse{OPERATION:OperationSet} OPERATION ::=

{ Forward{{OperationSet.&Linked}} }

Forward is an object set of class OPERATION parameterized by an
object set of the same class and is made up by the union of
three object sets OperationSet, OperationSet.&Linked.&Linked and
OperationSet.&Linked.&Linked.&Linked.&Linked (see Section 15.5 on
page 329). Reverse is an object set of class OPERATION also parameterized
by an object set of the same class. Note the two levels of curly brackets
for the actual parameter Forward: the outermost level indicates that
it is a parameter, the innermost level indicates that it is an object
set made by extracting the &Linked information from the object set
OperationSet.

Finally, when importing or exporting parameterized definitions in the
module header, it is recommended to follow each parameterized reference
up with a pair of curly brackets in the EXPORTS and IMPORTS clauses. For
the last two types, it gives:

ModuleName DEFINITIONS ::=

BEGIN

EXPORTS Forward{}, Reverse{}, ForwardAndReverse;

IMPORTS

OPERATION FROM Remote-Operations-Information-Objects

{joint-iso-itu-t remote-operations(4)

informationObjects(5) version1(0)}

Forward{}, Reverse{}

FROM Remote-Operations-Useful-Definitions

{joint-iso-itu-t remote-operations(4)

useful-definitions(7) version1(0)};

-- dynamically extensible object set:

MyOperationSet OPERATION ::= {...}

-- non-parameterized definition:

ForwardAndReverse OPERATION ::=

{Forward{{MyOperationSet}} UNION Reverse{{MyOperationSet}}}

END

384 ASN.1 – Communication between Heterogeneous Systems

17.2.2 Reference Manual

ParameterizedAssignment →
ParameterizedTypeAssignment
| ParameterizedValueAssignment
| ParameterizedValueSetTypeAssignment
| ParameterizedObjectClassAssignment
| ParameterizedObjectAssignment
| ParameterizedObjectSetAssignment

〈1〉 The right-hand part of a ParameterizedAssignment (i.e. after “::=”)
cannot consist only in a formal parameter DummyReference.
〈2〉 Normally an abstract syntax should not contain formal parameters
on its PDU level, except if these parameters appear in a subtype con-
straint (production Constraint on page 293), in which case they are
called parameters of the abstract syntax and the constraint is said to be
variable. If the actual parameters are not defined in the abstract syntax,
the values implemented can be specified in a protocol instance compli-
ance statement (PICS, see footnote 4 on page 379). When a parameter
remains declared as a variable in a PICS, it may take different values
from one communication instance to another, and even change during a
given communication instance.

ParameterizedTypeAssignment →
typereference ParameterList “::=” Type

〈3〉 A ParameterizedTypeAssignment must not contain a direct or indi-
rect reference to itself unless such a reference is directly or indirectly
marked OPTIONAL in a structure or unless this reference is included in a
CHOICE type where one of the alternatives is not circular.
〈4〉 In a ParameterizedTypeAssignment, a formal parameter DummyRef-
erence that is a type cannot be used as a tagged actual parameter within
a recursive reference to this ParameterizedTypeAssignment (an example
that justifies this rule is given in [ISO8824-4, clause A.3]).

ParameterizedValueAssignment →
valuereference ParameterList Type “::=” Value

〈5〉 A ParameterizedValueAssignment must not contain a direct or indi-
rect reference to itself.

ParameterizedValueSetTypeAssignment →
typereference ParameterList Type “::=” ValueSet

17 - Parameterization 385

〈6〉 A ParameterizedValueSetTypeAssignment must not contain a direct
or indirect reference to itself unless such a reference is directly or indi-
rectly marked OPTIONAL in a structure or unless this reference is included
in a CHOICE type where one of the alternatives is not circular.
〈7〉 In a ParameterizedValueSetTypeAssignment, a formal parameter
DummyReference that is a type cannot be used as a tagged actual pa-
rameter within a recursive reference to this ParameterizedValueSetTy-
peAssignment (an example that justifies this rule is given in [ISO8824-4,
clause A.3]).

ParameterizedObjectClassAssignment →
objectclassreference ParameterList “::=” ObjectClass

〈8〉 A ParameterizedObjectClassAssignment must not contain a direct or
indirect reference to itself unless such a reference is directly or indirectly
marked OPTIONAL.

ParameterizedObjectAssignment →
objectreference ParameterList DefinedObjectClass “::=” Object

〈9〉 A ParameterizedObjectAssignment must not contain a direct or in-
direct reference to itself.

ParameterizedObjectSetAssignment → objectsetreference
ParameterList DefinedObjectClass “::=” ObjectSet

〈10〉 A ParameterizedObjectSetAssignment must not contain a direct or
indirect reference to itself.

ParameterList → “{” Parameter “,” · · ·+ “}”
Parameter → ParamGovernor “:” DummyReference

| DummyReference

〈11〉 If there is an ambiguity on the syntax of a formal parameter Dum-
myReference (is it an information object class or a type? Is it an object
or a value?), it can generally be removed on the first occurrence of the
formal parameter at the right-hand side of the definition. If the formal
parameter is used as an actual parameter of a ParameterizedReference
(see on page 117), its nature should be recursively determined by the
definition of this ParameterizedReference.

ParamGovernor → Governor
| DummyGovernor

Governor → Type
| DefinedObjectClass

386 ASN.1 – Communication between Heterogeneous Systems

DummyGovernor → DummyReference
DummyReference → Reference

〈12〉 The governor and the governed parameter must respect the rules
of the semantic model of ASN.1 presented in Section 9.4 on page 121.
〈13〉 If the formal parameter DummyReference is a value or a value set,
the governor ParamGovernor must be present and it must be a type (or
a value set) that restricts the set of possible values.
〈14〉 If a formal parameter DummyReference is a value or a value set,
all the governor’s values must be valid for all the occurrences of the pa-
rameter at the right-hand side of the parameterized reference.
〈15〉 If the formal parameter DummyReference is an information ob-
ject or an information object set, the governor ParamGovernor must
be present and it must be the name of an information object class (in
particular, the governor of an information object set cannot be another
object set).
〈16〉 If the formal parameter DummyReference is a type or an informa-
tion object class, it must have no governor ParamGovernor .
〈17〉 If the formal parameter DummyReference is a type and if it is used
where distinct tags are required (in a CHOICE, a SET or in a group of
optional components of a SEQUENCE, for instance), it must be tagged in
EXPLICIT mode by the specifier (see rule 〈6〉 on page 216) unless the
module includes the AUTOMATIC TAGS clause in its header. Examples of
tagging are given in [ISO8824-4, clause 9.8].
〈18〉 The governor of a formal parameter DummyReference must not
contain a reference to another formal parameter DummyReference if the
latter is governed.
〈19〉 The governor of a formal parameter DummyReference should re-
quire neither the knowledge of the formal parameter nor that of the
parameterized reference being defined.
〈20〉 The scope of a formal parameter DummyReference is the Param-
eterList itself, and the right-hand part (after the symbol “::=”) of the
ParameterizedAssignment .
〈21〉 Every formal parameter DummyReference must be used at least
once within its scope (see the preceding rule).
〈22〉 A formal parameter DummyReference takes precedence over all the
other references of the same name appearing in its scope.
〈23〉 The use of a formal parameter DummyReference in its scope must
be consistent with its syntax and, if need be, with its governor, as well
as with any other occurrences of this DummyReference. Sometimes, the

17 - Parameterization 387

consistency checking needs to be delayed until the parameter is instan-
tiated, such as in the following example where the type Color depends
on what the value blue is:

Flag{Color} ::= SEQUENCE {

country VisibleString,

colors SEQUENCE OF Color DEFAULT {blue} }

Reference → typereference | valuereference
| objectclassreference | objectreference
| objectsetreference

〈24〉 Reference is here a local variable name and not a reference to an
entity (type, value, object...) defined in the module.

Reference to a parameterized type or to a parameterized
value set

ParameterizedType → SimpleDefinedType ActualParameterList
ParameterizedValueSetType →

SimpleDefinedType ActualParameterList

SimpleDefinedType → ExternalTypeReference
| typereference

〈25〉 typereference must be the name of a ParameterizedTypeAssignment
or a ParameterizedValueSetTypeAssignment of the current module, or
must appear as a Symbol in the IMPORTS clause of the current module.
〈26〉 The production ExternalTypeReference is presented on page 118.

Reference to a parameterized value

ParameterizedValue → SimpleDefinedValue ActualParameterList
SimpleDefinedValue → ExternalValueReference

| valuereference

〈27〉 valuereference must be the name of a ParameterizedValueAssign-
ment, or must appear as a Symbol in the IMPORTS clause of the current
module.
〈28〉 The production ExternalValueReference is presented on page 119.

388 ASN.1 – Communication between Heterogeneous Systems

Reference to a parameterized information object class

ParameterizedObjectClass →
DefinedObjectClass ActualParameterList

〈29〉 DefinedObjectClass (see on page 119) must be the name of a
ParameterizedObjectClassAssignment of the current module, or must
appear as a Symbol in the IMPORTS clause of the current module.

Reference to a parameterized information object

ParameterizedObject → DefinedObject ActualParameterList

〈30〉 DefinedObject (see on page 120) must be the name of a Parame-
terizedObjectAssignment of the current module, or must appear as a
Symbol in the IMPORTS clause of the current module.

Reference to a parameterized information object set

ParameterizedObjectSet →
DefinedObjectSet ActualParameterList

〈31〉 DefinedObjectSet (see on page 120) must be the name of a
ParameterizedObjectSetAssignment, or must appear as a Symbol in the
IMPORTS clause of the current module.

Common productions

ActualParameterList → “{” ActualParameter “,” · · ·+ “}”
ActualParameter → Type | Value

| ValueSet | DefinedObjectClass
| Object | ObjectSet

〈32〉 There must be exactly one ActualParameter for each formal pa-
rameter appearing in the corresponding ParameterizedAssignment (see
on page 384) and they must appear in the same order.
〈33〉 The meaning of a reference appearing as an ActualParameter and
the global tagging mode (see Section 12.1.3 on page 213) for this actual
parameter (if it denotes a type) depend on the actual parameter’s tag-
ging environment and not on the corresponding formal parameter’s.
〈34〉 If the ActualParameter is a value set or an object set, it must be
nested in curly brackets not to be confused with a type (and because the
grammar productions ValueSet and ObjectSet contain curly brackets).

17 - Parameterization 389

17.3 Parameters of the abstract syntax

As described in the previous section, parameters can be propagated from
one parameterized definition to another, but this chain of parameters
stop sooner or later on the specification’s top level type: the PDU, which
constitutes what is called the abstract syntax of messages exchanged
between communicating applications (see Section 3.2 on page 20).

But every now and then, a specifier may propagate a parameter,
which corresponds, for example, to a subtype constraint boundary; there
is no reason why such a parameter should be set up in a standardized
specification whereas it would rather depend on technical characteristics
of the implementation.

A parameter that remains formal at the PDU level because it de-
pends on the implementation is called parameter of the abstract syntax.
It is allowed only if it appears in subtype constraints (and can therefore
not be used in the component of a SEQUENCE type, for instance).

The parameters of the abstract syntax are assigned in an interna-
tional standardized profile (ISP, see footnote 3 on page 378) if they
correspond to the specialization of an existing standard or in a protocol
instance compliance statement (PICS, see footnote 4 on page 379) if
they depend on a particular implementation.

But the fact that parameters are different for every implementation
is prone to interworking errors. As a consequence, it is recommended
to use an exception marker8 “!” for subtype constraints that include
parameters of the abstract syntax:

CharacterString{INTEGER:max-length} ::= CHOICE {

teletexString TeletexString (SIZE (1..max-length)

!exceeds-max-length),

printableString PrintableString (SIZE (1..max-length)

!exceeds-max-length) }

exceeds-max-length INTEGER ::= 999

If the decoder receives oversized data (because the sender has not used
the same value for the parameter of the abstract syntax max-length),
it triggers the exception exceeds-max-length which enables calling a
dedicated procedure for these data and, for example, warn the user.

8The use of an exception marker in subtype constraints was exposed on page 292;
it corresponds to the production ExceptionSpec presented on page 255.

390 ASN.1 – Communication between Heterogeneous Systems

In Section 15.10 on page 359, we recommended defining an informa-
tion object of class ABSTRACT-SYNTAX in a module that contains a protocol
PDU to clearly identify it and associate its object identifier. If this PDU
includes parameters of the abstract syntax, these (but no others) should
appear as parameters of the information object of class ABSTRACT-SYNTAX:

my-abstract-syntax {INTEGER:maxSize} ABSTRACT-SYNTAX ::=

{ my-PDU{size-max} IDENTIFIED BY {iso

member-body(2) f(250) type-org(1) ft(16)

asn1-book(9) chapter17(4) my-PDU(0)} }

If the parameters of the abstract syntax are used at a low level in
the PDU, they should be propagated through all the definitions that
may require them. Indeed, it is impossible to define global parame-
ters to make them known by all the definitions of a module, for instance9.

We have already come across a special case of parameters of the
abstract syntax that were not necessarily associated with the top-level:
an object set that contains an extension marker “...” is dynamically
extensible (see on page 346). The communicating application can add or
remove objects during the connection. It is not necessary to propagate
such a parameter from the PDU down to the level of the definitions
that use it, since this property is implicit for every occurrence of the
extensible object set.

9The concept of global parameter was examined by the ASN.1 working group
(document ISO/IEC JTC 1/SC 21 N 9734), but was finally discarded since it appeared
that few users would actually need it.

Part III

Encoding Rules
and Transfer Syntaxes

Chapter 18

Basic Encoding
Rules (BER)

Contents

18.1 Main principles . 394

18.2 Encoding of all types . 398

18.3 Properties of the BER encoding rules 413

18.4 A complete example . 415

In three words I can sum up everything
I’ve learned about life. It goes on.

Robert Frost.

This third part of the book is focused on the standard encoding and de-
coding rules associated with ASN.1. It can be ignored by specifiers who,
generally, may not be concerned with the way the data they describe is
encoded. They can go directly to Chapter 22 where the practical use of
these encoding rules are discussed from the ASN.1 compiler viewpoint.

Before proceeding to the following three chapters, the reader may re-
fer again to Chapters 2 and 3 to brush up the notions of abstract syntax,
transfer syntax and encoding rules, which are crucial for this part. Re-
member in particular that applying encoding rules to an abstract syntax
provides a transfer syntax (see Figure 2.4 on page 15).

394 ASN.1 – Communication between Heterogeneous Systems

The Basic Encoding Rules, or BER, are historically the original en-
coding rules of ASN.1 since they were already part of the [X.409] stan-
dard before it was split up into two parts in 1985 (see Section 6.3.2 on
page 61). The term ‘basic’ indicated that other rules might be stan-
dardized in the future; it actually happened in 1994 when the packed
encoding rules (PER) presented in Chapter 20 were introduced in the
standard.

18.1 Main principles

All the rules defined in the current chapter and the next two are pre-
sented from the encoding standpoint and should obviously be interpreted
the other way around to obtain the decoding rules. Besides, we clearly
assume that the ASN.1 specification to be used is semantically correct,
i.e. all the rules enounced in Part II ‘Reference Manual’ are respected.

The BER transfer syntax always has the format of a triplet TLV
〈Type, Length, Value〉 (often noted 〈Tag, Length, Value〉 too) as in
Figure 18.1(a) on the next page. All the fields T, L and V are series
of octets. The value V can, itself, be a triplet TLV if it is constructed
(see Figure 18.1(b) on the next page). The most complex of the ASN.1
values are no more than a stack of less and less complex values.

The transfer syntax is octet-based1 and self-delimited since the field L
provides a means of determining the length of each TLV triplet. Because
the BER are ‘big Endians’ (see on page 8), the high-order bit is at the
left-hand side; it is numbered 7 as in Figure 18.1(c) on the next page.

The Tag octets (but generally one octet is enough) correspond to
the encoding of the tag of the value’s type. One of the bits specifies the
form (basic or constructed) of the V content octets. These tag octets
identify, therefore, the value unambiguously in its context2. They should
conform to one of the two formats of Figure 18.2 on page 396.

If the tag number is smaller than or equal to 30, the tag class and
number are encoded on a single octet as shown at the bottom of Figure
18.2 (all tags of class UNIVERSAL are grouped in Table 12.1 on page 209).
If the tag number is greater than 30, the second form is used; then the
number consists of the concatenation of the bits from no. 6 down to

1To avoid confusion with any internal representation mode (as already explained
in Section 10.7 on page 151), we use the word octet instead of byte throughout the
third part of the book.

2This context is still rule-governed by the condition for distinct tags (see rule 〈11〉
on page 217).

18 - Basic Encoding Rules (BER) 395

T L V

Tag Length Content

octets octets octets

(a) Triplet TLV

T L T L T L V T L V

(b) Recursive principle

76543210

01011001

(c) Bit weights

Figure 18.1: BER transfer syntax (TLV format)

no. 0 for all octets but the first one, whose five lower-order bits equal
11111. The bottom of Figure 18.2 on the next page shows that for all
octets but the last one, the bit no. 7 equals 1. If the tag is not encoded
on a number of bits that is a multiple of 7, some of the bits from no. 1
to 6 of the second octet are unused and filled with padding 0s. In these
two forms, the bit no. 5 of the first octet indicates whether the value
(i.e. the V field) is encoded in basic or constructed form. These two
forms are used in the next section.

The length octets represent the length of the value that is actually
encoded, i.e. the number of content octets used in the V part of the
TLV triplet. If the bit no. 5 of the first tag octet indicates a primitive
encoding form (see Figure 18.2 on the following page), the length is
encoded in definite form. If the bit indicates a constructed encoding
form, the sender may choose to code the length in definite or indefinite
form.

As shown on Figure 18.3 on the next page, the definite form can be
short (if the length of the V field is shorter than 127) or long, depending
on the sender. This liberty allows, for example, the protocol layer to
encode all the length fields on a fixed number of octets, for specific needs
of two communicating systems. If the sender should not be allowed to
choose the form of the length field, the CER or DER encoding rules,
derived from BER, can be used (see Table 19.1 on page 420).

396 ASN.1 – Communication between Heterogeneous Systems

0
6

ta
g
6

30
on

e
o
ct

et

cl
a
ss

P
/
C

t
t
t
t
t

ta
g
>

31
le

ad
in

g
o
ct

et

cl
a
ss

P
/
C

1
1
1
1
1

fo
ll

ow
in

g
o
ct

et
s

1
1

..
.

1
0

∪
∪.

..
∪

∪

b
it

7
b

it
6

cl
as

s

0
0

U
N
I
V
E
R
S
A
L

0
1

A
P
P
L
I
C
A
T
I
O
N

1
0

co
n
te

x
t-

sp
ec

ifi
c

1
1

P
R
I
V
A
T
E

b
it

5
fo

rm

0
P

ri
m

it
iv

e
1

C
on

st
ru

ct
ed

F
ig

u
re

18
.2

:
T

h
e

tw
o

fo
rm

at
s

of
th

e
ta

g
o
ct

et
s

(T
)

sh
or

t
d

efi
n

it
e

le
n

gt
h

(p
ri

m
it

iv
e

fo
rm

)
0
6

le
n

gt
h
6

12
7

o
ct

et
s

(l
en

gt
h

=
n
b

of
o
ct

et
s

fo
r

V
)

0
L
L
L
L
L
L
L

lo
n

g
d

efi
n

it
e

le
n

gt
h

(p
ri

m
it

iv
e

fo
rm

)
0
6

le
n

gt
h
6

25
6

1
2
6
−

1
o
ct

et
s

(l
en

gt
h

=
n
b

of
o
ct

et
s

fo
r

V
)

1
l
l
l
l
l
l
l

(l
l
l
l
l
l
l

=
n
b

of
o
ct

et
s

fo
r

L
w

h
er

e
l
l
l
l
l
l
l
6=

1
1
1
1
1
1
1
)

..
.

in
d

efi
n

it
e

le
n

gt
h

(c
on

st
ru

ct
ed

fo
rm

)
1

0
0
0
0
0
0
0

en
d

-o
f-

co
n
te

n
t

o
ct

et
s

co
n
te

n
t

o
ct

et
s

(V
)

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

F
ig

u
re

18
.3

:
T

h
e

th
re

e
fo

rm
at

s
of

th
e

le
n

gt
h

o
ct

et
s

(L
)

18 - Basic Encoding Rules (BER) 397

In the long form, the first octet of the L part represents the length of
the length, i.e. the number of octets necessary for encoding the length
(it cannot be encoded on 127 octets, for this length is reserved for future
extensions).

The encoding of the indefinite form is more specifically used when
the whole content part is not available for the sender so that its length
cannot be computed before sending the whole TLV triplet. For exam-
ple, if the Application layer ‘cuts up’ and hands over the data to the
Presentation layer by small items and if the Presentation layer has little
memory space available, it may start transmitting without knowing the
whole data length. The encoding in indefinite form also prevents double-
scanning the values (once for computing their length and a second time
to actually encode them) and therefore provides more efficient encoders.
Unfortunately, the decoder, on the other side, cannot allocate the ade-
quate memory space before receiving all the data. Note that splitting
the data into small items like this is not allowed in DER encoding (see
Table 19.1 on page 420).

If the value is encoded in indefinite form, two zero octets are added
after the encoding of the value (which is necessarily in constructed form).
These two trailing octets are in fact a TLV triplet that stands for the
encoding of a value tagged [UNIVERSAL 0] of zero length (hence there is
no V octet in the content field). This justifies a posteriori our keeping
the tag no. 0 of class UNIVERSAL in Table 12.1 on page 209 and ensures
an unambiguous encoding since no ASN.1 type can ever use this tag.

Generally speaking, the T tag field and L length field extend the V
value of only two octets. The V content field is discussed in the next
section.

The BER encoding rules are registered with the object identi-
fier {joint-iso-itu-t(2) asn1(1) base-encoding(1)} in the registration
tree of Figure 10.4 on page 161 and the object descriptor "Basic

Encoding of a single ASN.1 type" (see Section 11.15 on page 198).
This object identifier will be used in a negotiation phase as presented
on Figure 3.2 on page 22 to indicate that the BER transfer syntax must
be associated with the abstract syntax proposed by the communicating
application.

398 ASN.1 – Communication between Heterogeneous Systems

18.2 Encoding of all types

In this section, the examples of encoding are (almost) systematically
provided with a tag of class UNIVERSAL for the field T and a value encoded
in the short form. Other encoding forms can of course be chosen by the
sender whenever these are allowed and the T field can encode other
classes of tags in case of tagging in implicit mode.

18.2.1 BOOLEAN value

The encoding of the boolean values is necessarily primitive. The FALSE

value is encoded as a triplet3:

T

110

L

110

V

00000000

The value TRUE is encoded on any single not-null octet; the sending
application may choose, for example:

T

110

L

110

V

11111111 or

T

110

L

110

V

10110011

18.2.2 NULL value

The NULL value is encoded without value octet:

T

510

L

010

V

18.2.3 INTEGER value

The encoding of the INTEGER values is necessarily in primitive form.
According to the encoding/decoding diagrams on Figure 18.4 on the next
page, the content octets represent the binary encoding of the integer if
it is positive, or its two’s-complement if it is negative4. The first octet
equals zero when a positive integer is encoded on a whole number of
octets whose high-order bit is set to 1. If the number of bits is not a

3In the rest of this chapter, the subscript notation n10 denotes a number n in base
10 (not in base 2) for reading’s sake.

4The only null integer is 0; there exists no -0 integer as in the one’s-complement
arithmetic.

18 - Basic Encoding Rules (BER) 399

positive integer: if high-order bit = 0 0bbbbbbb ...

if high-order bit = 1 00000000 1bbbbbbb ...

negative integer: 1st: |v| in binary 11000110 00001001

2nd: 1’s-complement

(
0→ 1
1→ 0

)
00111001 11110110

3rd: 2’s-complement (+12) 00111001 11110111

(a) encoding

pp-1 p-7

0bbbbbbb · · ·
7 0

bbbbbbbb ⇒ positive integer =
p−1∑
i=0

2i

pp-1 p-7

1bbbbbbb · · ·
7 0

bbbbbbbb ⇒ negative integer =
p−1∑
i=0

2i − 2p

(b) decoding

Figure 18.4: Two’s-complement for integers

multiple of 8, the high-order bits are filled with the adequate number
of 0s before two’s-complementing it if necessary. All the first nine bits
cannot equal 0 or 1.

Using Figure 18.4, we find, for example, that the integer -27,066 is
encoded as:

T = 2

00000010

L = 2

00000010

V = -27,066

10010110 01000110

Nothing forbids the compiler from allocating a fixed-size memory
space to store an integer whose type is constrained by an interval in the
ASN.1 specification (see Section 13.4 on page 263).

18.2.4 ENUMERATED value

The integer associated with an enumeration identifier (which can be
computed according to the rule 〈12〉 on page 140) is encoded following
the directions given in the previous section. If the ENUMERATED type

400 ASN.1 – Communication between Heterogeneous Systems

includes an extension marker, an identifier in the extensions is encoded
as if it were part of the root because the BER implicitly take into account
extensibility since there exists no restriction regarding the size of integers
to be encoded.

18.2.5 REAL value

Even though, from the abstract syntax’s viewpoint, the REAL type is
semantically equivalent to a SEQUENCE type (see rule 〈2〉 on page 144), a
value of that type is always encoded in primitive form according to one
of the numerous possibilities presented in Figure 18.5 on the next page
(others may be standardized in the future). Encoding rules like CER
or DER (see Chapter 19) may restrict these possibilities. What follows
ensures that ASN.1 REAL values in base 2 or 10 are properly decoded by
the receiver (see rule 〈8〉 on page 144).

If the base component of the ASN.1 REAL value equals 10, the
character-based encoding is retained: the real number is represented
as a string like ‘123E+100’ according to the NR1, NR2 or NR3 formats
defined in the [ISO6093] standard (see on page 143). This string is then
encoded in ASCII (as a string of type IA5String). These formats may
begin with unlimited blank spaces, and begin or end with unlimited
zeros. The leading plus sign “+” is optional and the decimal separator
is either a dot or a comma... (see Table 19.1 on page 420 for restricting
these options).

If the base component of the ASN.1 REAL value equals 2, the binary
encoding is retained; the encoding base BB is chosen by the sender, gen-
erally according to its internal implementation of real numbers (it bears
no relation with the base component of the abstract syntax). As com-
puting systems do not generally store the mantissa as an integer, the
scale factor FF may shift the data of one or two bits in base 8 or 16 to
make up for the fact that the exponent can only shift them from 3 or
4 bits. This scale factor has the advantage of moving the decimal sepa-
rator (dot or comma) on an octet’s boundary, and prevent the encoder
from shifting the mantissa to bring back its least significant bit on the
octet’s boundary (see [ISO8825-1, annex C]).

18 - Basic Encoding Rules (BER) 401

0

T 9 1
0

L

0 1
0

V

P
L
U
S
-
I
N
F
I
N
I
T
Y

9 1
0

1 1
0

0
1
0
0
0
0
0
0

M
I
N
U
S
-
I
N
F
I
N
I
T
Y

9 1
0

1 1
0

0
1
0
0
0
0
0
1

ch
ar

ac
te

r
st

ri
n

g
en

co
d

in
g

9 1
0

(n
+

1)
1
0

0
0

N
R

··
·

(n
o
ct

et
s)

N
R

en
co

d
in

g
in

[I
S

O
60

93
]

re
p

re
se

n
ta

ti
on

(s
ee

on
p

ag
e

14
3
)

0
0
0
0
0
1

N
R

1:
“3

”,
“-

1
”,

“+
1
0
0
0
”

0
0
0
0
1
0

N
R

2:
“3

.
0
”,

“-
1
.
3
”,

“-
.
3
”

0
0
0
0
1
1

N
R

3:
“3

.
0
E
1
”,

“1
2
3
E
+
1
0
0
”

b
in

ar
y

en
co

d
in

g
in

b
as

e
B
B

9 1
0

(n
+
p

+
1)

1
0
1
S
B
B
F
F
E
E

··
·

(n
o
ct

et
s

fo
r

th
e

ex
p

o
n

en
t,

1
st

o
ct

et
fo

r
th

e
le

n
g
th

if
E
E
=
1
1
)

··
·

(p
o
ct

et
s

fo
r

th
e

p
o
si

ti
v
e

in
te

g
er
N

su
ch

th
a
t

m
a
n
ti

ss
a

=
S
×
N
×

2
F
F
)

S
si

gn

0
+

1
1
−

1

B
B

en
co

d
in

g
b

as
e

0
0

2
0
1

8
1
0

16

F
F

sc
al

e

0
0

0
0
1

1
1
0

2
1
1

3

E
E

en
co

d
in

g
of

th
e

ex
p

on
en

t

0
0

on
th

e
fo

ll
ow

in
g

o
ct

et
0
1

on
th

e
2

fo
ll

ow
in

g
o
ct

et
s

1
0

on
th

e
3

fo
ll

ow
in

g
o
ct

et
s

1
1

en
co

d
in

g
of

th
e

le
n

gt
h

of
th

e
2’

s-
co

m
p

le
m

en
t

en
-

co
d

in
g

of
e
x
p
o
n
e
n
t

on
th

e
fo

ll
ow

in
g

o
ct

et
,

an
d

2’
s-

co
m

p
le

m
en

t
en

co
d

in
g

of
e
x
p
o
n
e
n
t

on
th

e
ot

h
er

o
ct

et
s

F
ig

u
re

18
.5

:
T

h
e

en
co

d
in

g
fo

rm
s

of
a
R
E
A
L

va
lu

e

402 ASN.1 – Communication between Heterogeneous Systems

The binary encoding format is closer to the way the floating-point
processors work. It allows the encoder to directly copy (dump) the
mantissa’s octets in their internal-memory storing format even if they are
not positioned as they should be for transfer. Contrary to the INTEGER

type, the mantissa is not encoded in two’s-complement but going from
one format to another is straightforward if the mantissa is known since
the sign is given by the S bit.

The encoded real number is therefore equivalent to S×N×2F×BBEE

where S × N × 2F, BB and EE are unrelated to the mantissa, base and
exponent components of the ASN.1 abstract value.

Though slightly different from the usual formats handled by floating-
point processors, the bi-directional conversion between the BER formats
and the machine format for real numbers can be obtained very easily
because the format adopted for BER is half-way between the various
formats handled by computers. The drawback is that an encoder has to
know all those different formats. We will see in the next chapter that
the distinguished encoding rules (DER), for example, impose a single
format (see Table 19.1 on page 420).

18.2.6 BIT STRING value

The encoding form can be primitive or constructed. In the primitive
form, the string is cut up in octets and a leading octet is added so that
the number of bits left unused at the end could be indicated by an integer
between 0 and 7. The bit string ’1011011101011’B is therefore encoded
as:

T

000 310

L

310

V

310 10110111 01011xxx

The unused bits are represented above by xxx, the sender can choose to
pad them by 0s or 1s (possibly mixed).

If the BIT STRING type includes a named-bit list in the specification,
the decoder is free to add or remove a certain number of 0 bits at the
end (see rule 〈15〉 on page 150).

Rights ::= BIT STRING { user-read(0), user-write(1),

group-read(2), group-write(3),

other-read(4), other-write(5) }

group Rights ::= { group-read, group-write }

18 - Basic Encoding Rules (BER) 403

This group value can therefore be encoded as:

T

000 310

L

210

V

310 00110xxx

If the bit string is empty (or if it has no 1-bits), the leading octet
is set to 0 and may be followed (as a sender’s option) by one or more
other 0 octets. Very often, the only V octet present is the leading octet,
which indicates the number of meaningless ending bits, that is:

T

000 310

L

110

V

010

The constructed form should be preferred if part of the data must be
transmitted before the whole bit string is available. In this case, the bit
no. 5 of the T tag octet equals 1, the L octet indicates that the length
is undefined (see Figure 18.3 on page 396) and the content octets are
made of a series of TLV triplets where T necessarily5 encodes the tag
[UNIVERSAL 3] and where V represents a part of the bit string encoded
in primitive or (recursively) constructed form.

Each part should have a length that is a multiple of 8 bits (hence
its first value octet is necessarily 0) except sometimes the last part for
which the first value octet indicates the number of unused bits in the
last value octet (padding with 0s or 1s is up to the sender). Empty parts
of nil length can be inserted in the following form:

T L V

000 310 0 210

The octet stream ends with two null ‘end-of-content’ octets6. When
receiving the data, the decoder builds up again the bit string by con-
catenating the content octets in the right order.

5This tag identification is redundant but it ensures the encoding homogeneity by
preserving the TLV format in all levels of the BER transfer syntax.

6These two octets cannot be considered as belonging to a bit string because the
length of each part is known.

404 ASN.1 – Communication between Heterogeneous Systems

If we go back on the binary string ’1011011101011’B, an encoding in
constructed form could be:

T L V

001 310 10000000 T L V

000 310 0 210 010 10110111

000 310 0 210 310 01011xxx

010 010

18.2.7 OCTET STRING value

The encoding of an octet string is similar to that of a BIT STRING value.
As a consequence, the encoding can be in primitive or constructed form.
Since there exists no unused bits at the end of the string, the leading
octet does not appear (ASN.1 imposes that an octet string in binary
or hexadecimal form should be filled with a sufficient number of 0s so
that its length could be a multiple of 8 bits, see rules 〈4〉 and 〈6〉 on
page 153).

18.2.8 OBJECT IDENTIFIER value

The encoding is always in primitive form. It is the number associated
with each arc that is encoded but not the identifiers. Every integer is
encoded on a series of octets where all the bits no. 7 but for the last octet
equals 1. The encoding of the integer is therefore the concatenation of
the bits from no. 6 down to no. 0 for each octet (this form is similar
to the long-form encoding of the tag octets presented in Figure 18.2 on
page 396).

The first two arcs of the registration tree (see Figure 10.4 on
page 161) are encoded on a single integer using the formula7 ‘first arc×
40+second arc’, which assumes8 that there is no more than 39 arcs just
below the iso and itu-t arcs of the root. No limitation, however, is
imposed on the number of arcs under joint-iso-itu-t.

7This formula legitimizes the rule 〈4〉 on page 166, which imposes that an object
identifier must contain at least two arcs. One can get round this rule using the new
RELATIVE-OID type (see Section 10.9 on page 167).

8Note that if the [ISO9834-1] standard for management of the international reg-
istration tree inserts a new arc below the root, the BER standard should be adapted
as appropriate (while keeping the encoding compatibility) since such an addition is
not provided for at the moment.

18 - Basic Encoding Rules (BER) 405

first octet(s) first arc second arc

0 6 n 6 39 itu-t n

40 6 n 6 79 iso n− 40

n > 80 joint-iso-itu-t n− 80

Table 18.1: Decoding of the first octets of an object identifier

The decoding of the first content octet should therefore be carried
out according to Table 18.1. Nevertheless, the decoder does not always
need to decode an object identifier: it may only concatenate the content
octets and compare the resulting string with those associated with the
various syntaxes negotiated by the Presentation layer (in the case of a
value embedded by one of the presentation context negotiation types of
Chapter 14).

The encoding of the object identifier {iso member-body f(250)

type-org(1) ft(16) asn1-book(9)} gives:

T

610

L

610

V

4210 1 110 0 12210 110 1610 910

1× 40 + 2 250 1 16 9

18.2.9 RELATIVE-OID value

The encoding is always in primitive form. A relative object identifier
is encoded as an object identifier according to the rules stated in the
previous section, that is to say that the integer associated with each arc
is encoded on a series of octets where every no. 7 bit, but for the last
octet, equals 1 (the encoding of the integer is therefore the concatenation
of the bits from no. 6 down to 0 for each octet).

Contrary to the OBJECT IDENTIFIER type, there is no point in dealing
separately with the first two arcs of the registration tree because the
reference node of a relative object identifier cannot be the root nor a
node just below this root (see rule 〈3〉 on page 169).

406 ASN.1 – Communication between Heterogeneous Systems

So the encoding of the relative object identifier {f(250) type-org(1)

ft(16) asn1-book(9)} is given by:

T

610

L

510

V

1 110 0 12210 110 1610 910

250 1 16 9

18.2.10 Character strings and dates

All the character strings and dates that conform to the types presented in
Chapter 11 are encoded as if they were octet strings of type [UNIVERSAL

t] IMPLICIT OCTET STRING where t is the tag of class UNIVERSAL of the
considered character string type (see Table 11.1 on page 175).

The strings of type NumericString, PrintableString, IA5String,
TeletexString (or T61String), VideotexString, VisibleString (or
ISO646String), GraphicString, GeneralString, ObjectDescriptor,
UTCTime and GeneralizedTime are encoded on 8 bits according to the
[ISO2022] standard and may use escape sequences9 and character
encodings registered according to the [ISO2375] standard. For each
character string type, the character sets G, C0 and C1 (see on page 177)
are fixed by default. These are not discussed here; they can be found
in [ISO8825-1, Table 3].

Strings of type UniversalString, BMPString and UTF8String are en-
coded according to the [ISO10646-1] standard10. Every character is
encoded on 4 octets for UniversalString, 2 octets for BMPString and
the smallest number of octets conforming to [ISO10646-1Amd2] or
[RFC2279] (see Table 11.3 on page 191) for UTF8String.

18.2.11 SEQUENCE value

The encoding is in constructed form. Every component is encoded as a
TLV triplet; the ordering of the triplets is the same as the order of the

9Table 11.1 on page 175 describes the character string types that include escape
characters.

10Signatures must not be used. Control functions C0 and C1 must conform to the
recommendations of [ISO8825-1, clause 8.20.9].

18 - Basic Encoding Rules (BER) 407

components in the SEQUENCE type definition in the ASN.1 specification
(once developed, if present, the COMPONENTS OF operators according to
rule 〈19〉 and following on page 224). A component marked DEFAULT is
not necessarily encoded, even if the sending application provided a value
for this component (it is a sender’s option).

For example, the value:

v SEQUENCE { age INTEGER,

single BOOLEAN } ::= { age 24,

single TRUE }

is encoded as:

T

001 1610

L

610

V

T

000 210

L

110

V=24

2410

T

000 110

L

110

V=TRUE

510

Although the T tag octets are only necessary when encoding optional
components (see rule 〈14〉 on page 224), they all need to be encoded to
preserve homogeneity in the transfer syntax.

If the SEQUENCE type includes an extension marker, it is ignored and
the components in the extensions are encoded as if they belonged to
the extension root because the BER implicitly take extensibility into
account thanks to tagging.

18.2.12 SET value

The principle of encoding SET values is the same as the SEQUENCE type,
but the encoding ordering of the components is up to the sender; this is
not necessarily the ordering of the ASN.1 specification (for this reason,
the SET type has tag 17 of class UNIVERSAL whereas the SEQUENCE type
has tag 16). Besides, the decoder does not have to keep this order when
providing the values to the receiving application.

If the SET type includes an extension marker, it is ignored and the
components in the extensions are encoded as if they belonged to the
extension root because the BER implicitly take extensibility into account
thanks to tagging.

408 ASN.1 – Communication between Heterogeneous Systems

18.2.13 SEQUENCE OF value

The SEQUENCE OF type has the same tag [UNIVERSAL 16] as the SEQUENCE

type. Thus it adopts the same encoding rules, i.e. every element of the
list is encoded as if it were a component of a SEQUENCE type (so the tag
field T of the encoding of every single element contains the redundant
UNIVERSAL class tag of the type of these elements).

The encoding of the value:

triplet SEQUENCE OF INTEGER ::= {2, 6, 5}
is given by:

T

001 1610

L

910

V

T

000 210

L

110

V

210

000 210 110 610

000 210 110 510

18.2.14 SET OF value

A value of type SET OF is encoded as if every one of its elements were
the component of a SET type. The encoding ordering is chosen by the
sender.

18.2.15 CHOICE value

Strictly speaking, a CHOICE type has no real existence but is only a
way of proposing an alternative on the ASN.1 specification’s level. A
value of type CHOICE is encoded according to the type (and the tag)
of the alternative that has been retained. The restrictions on distinct
tags imposed by rule 〈9〉 on page 238 ensure the non-ambiguity of the
decoding.

The encoding of the value:

famous CHOICE { name VisibleString,

nobody NULL } ::= name:"Perec"

is given by:

T

000 2610

L

510

"P"

8010

"e"

10110

"r"

12010

"e"

10110

"c"

9910

18 - Basic Encoding Rules (BER) 409

If the CHOICE type is preceded by a tag (which is necessarily of class
EXPLICIT), like, for example, in:

famous [0] CHOICE { name VisibleString,

nobody NULL } ::= name:"Perec"

the tag [0] is encoded in constructed form as explained in the following
section.

If the CHOICE type includes an extension marker, it is ignored and
an extension’s alternative is encoded as if it belonged to the extension
root because the BER implicitly take extensibility into account thanks
to tagging.

18.2.16 Tagged value

If a type is tagged in IMPLICIT mode (or if the module includes the
IMPLICIT TAGS or AUTOMATIC TAGS clause in its header)11:

v [1] IMPLICIT INTEGER ::= -38

only the tag12 that appears on the left-hand side of the IMPLICIT keyword
is encoded in the tag field T:

T

100 110

L

110

V

11011010

If the type is tagged in EXPLICIT mode (or if the module includes the
EXPLICIT TAGS clause in its header):

v [APPLICATION 0] EXPLICIT INTEGER ::= 38

the value is encoded in constructed form as a series of TLV triplets where
the tag fields T contain all the subsequent tags until the UNIVERSAL class
tag of the type is encountered; this tag must be included in the encoding
(see rules 〈2〉 and 〈3〉 on page 216):

[APPL. 0]

011 010

L

310

[UNIV. 2]

000 210

L

110

V

00100110

11Remember that CHOICE and ANY types, open types and parameters that are types
cannot be tagged in IMPLICIT mode (see rule 〈6〉 on page 216).

12ASN.1 allows several tags to appear on the left-hand side of the IMPLICIT keyword
(see rules 〈3〉 and 〈4〉 on page 216), but it is useless in practice. In such a case, the
tags are encoded in constructed form as if there were an explicit tagging mode.

410 ASN.1 – Communication between Heterogeneous Systems

1994/97 version 1990 version

alternative identification component direct-reference component indirect-reference

(see on page 301) (see on page 299) (see on page 299)

syntax syntax absent

presentation-context-id absent presentation-context-id

context-negotiation transfer-syntax presentation-context-id

Table 18.2: Correspondence between abstract syntax and transfer syntax
for the EXTERNAL type

18.2.17 Subtype constraints

Because the basic encoding rules were introduced before the subtype
constraints in the ASN.1 standard, the latter were not supported by the
BER. The length field L is, therefore, always transmitted even though
the length is fixed by a SIZE constraint in the abstract syntax.

The subtype constraints’ extensibility is implicitly taken into account
by the BER.

18.2.18 EXTERNAL value

As discussed in Section 14.1 on page 298, the EXTERNAL type definition has
changed between the 1990 and 1994/97 editions of the ASN.1 standard.
To ensure upward compatibility of encodings, values of EXTERNAL type,
even if they conform to the SEQUENCE type of Figure 14.1 on page 301
(1994 version), are encoded as if they conformed to the SEQUENCE type
on page 299 (1990 version); the context-specific class tags, in particu-
lar, which appear before the alternatives of the encoding component (of
type CHOICE) must be encoded but those computed in the 1994 version
must not. The correspondence between the two versions is obtained in
Table 18.2.

The value embedded in the value of type EXTERNAL is encoded ac-
cording to the encoding rules denoted by the alternative identification

(1994/97 version) and it is transmitted in one of the alternatives of the
encoding component (1990 version): if the embedded value conforms
to an ASN.1 type and if it is encoded according to the same encoding
rules as the value of EXTERNAL type, any of the three alternatives can
be retained; if the embedded value is encoded according to the encod-
ing rules that were negotiated (i.e. agreed on by the two applications)
and if it includes a whole number of octets, one of the two alternatives,
octet-aligned or arbitrary, must be chosen; the arbitrary alternative
is retained by default.

18 - Basic Encoding Rules (BER) 411

18.2.19 INSTANCE OF value

Since the INSTANCE OF type has the same tag of class UNIVERSAL as the
EXTERNAL type, their encodings are identical. Besides, a value of type
INSTANCE OF must conform to the SEQUENCE type of rule 〈4〉 on page 358.
Comparing this type to the SEQUENCE type (1990 version) associated with
the EXTERNAL type and defined on page 299 shows that the type-id com-
ponent (value component respectively) of an INSTANCE OF value is trans-
mitted in the direct-reference component (single-ASN1-type compo-
nent respectively) of the EXTERNAL type. The encoding rules used for
encoding the value embedded in the value component are the same as
those used in the rest of the specification.

Since the value component is tagged in explicit mode, the BER
encoding of the embedded value includes the tag of class UNIVERSAL of
its ASN.1 type, which means that the value:

v INSTANCE OF TYPE-IDENTIFIER ::=

{ type-id {iso member-body f(250) type-org(1) ft(16)

asn1-book(9) chapter18(5) integer-type(0)},

value INTEGER:5 }

is encoded as the equivalent value of the following SEQUENCE type:

{ direct-reference {iso member-body f(250) type-org(1)

ft(16) asn1-book(9) chapter18(5)

integer-type(0)},

encoding single-ASN1-type:INTEGER:5 }

that is:

[UNIV. 8]

001 810

L

1510

[UNIV. 6]

000 610

L

810

V = object identifier

4210 1 110 0 12210 110 1610 910 510 010

[0]

101 010

L

310

[UNIV. 2]

000 210

L

110

V

510

For decoding, the distinction EXTERNAL/INSTANCE OF is no cause for
misinterpretation for the receiving application: the object identifier of
the direct-reference component denotes an abstract syntax for an
EXTERNAL type or an ASN.1 type for an INSTANCE OF type.

412 ASN.1 – Communication between Heterogeneous Systems

18.2.20 EMBEDDED PDV value

An EMBEDDED PDV value is encoded according to the SEQUENCE type associ-
ated with the EMBEDDED PDV type and defined in Figure 14.3 on page 305.
The embedded value is encoded13 with respect to the transfer syntax
identified by the identification component, and then transmitted by
the data-value component of type OCTET STRING.

18.2.21 CHARACTER STRING value

A CHARACTER STRING value is encoded according to the SEQUENCE type
associated with the CHARACTER STRING type and defined in Figure 14.4
on page 307. The embedded character string is encoded14 with respect
to the transfer syntax identified by the identification component, and
then transmitted by the string-value component of type OCTET STRING.

18.2.22 Information objects and object sets, encoding of
a value of an open type

Information objects and object sets are never encoded. To transfer the
information they contain, it must be extracted as exposed in Section 15.6
on page 336. This information can then be used by other ASN.1 values
and encoded according to the rules associated with the type of these
values.

To transfer a value of an open type (or of type ANY for the speci-
fications referring to ASN.1:1990), a value of a tagged type (see Sec-
tion 18.2.16 on page 409) is encoded with the tag of the actual type of
the value. Thus the value:

v ABSTRACT-SYNTAX.&Type ::= [0] IMPLICIT INTEGER:5

is encoded using the tag presented before the INTEGER type, i.e. [0]:

T=[0]

100 010

L

110

V

510

13In the BER:1994 standard, the EMBEDDED PDV and CHARACTER STRING types had
several encoding forms called EP-A, EP-B, CH-A and CH-B which were more or
less computationally expensive (see footnote 4 on page 303). Unfortunately, under
some circumstances, chaining such encodings by relay-applications could come up
with non-decodable data (notably in the case of the X.500 Directory associated with
a DER global encoding, or when these types appeared in extensions). These different
forms were finally replaced by a single form as described above.

14See footnote 13.

18 - Basic Encoding Rules (BER) 413

But this tag [0] is not enough for the receiver to decode the TLV triplet
as an INTEGER value. There should be another mechanism of denoting
unambiguously the type: it consists in transmitting, with the value of
the open type, an integer or an object identifier (in most cases). Both
the encoder and the decoder have access to the same table for associat-
ing types to object identifiers (or integers). They only need to look up
the identifier in this table to find the type associated with the identi-
fier they have received and decode the value of the open type according
to its actual type. This association of transmitted informations is for-
malized in ASN.1 with a component relation contraint (see production
ComponentRelationConstraint on page 350).

As explained in Section 15.5 on page 329, ASN.1 has offered since
1994 a concept for formalizing this association table: the information
object set. Such a table can now be directly taken into account by
compilers to generate decoders that can automatically decode values of
open types according to their actual types. Regardless of this table,
the decoder transfers a value of an open type as an octet string15 to the
receiver. It is then down to the latter to invoke the appropriate decoding
routine.

18.2.23 Value set

A value whose type is defined as a value set (production ValueSetTy-
peAssignment on page 110) is encoded according to the rules associated
with the type of the value set.

18.3 Properties of the BER encoding rules

First the BER are architecture-independent: the bit weights have been
arbitrarily set (see Figure 18.1(c) on page 395) and the encoding formats
can be easily converted to those handled by communicating applications.
Besides, the encoding is general enough to support integers whatever
their lengths; this is definitively a remarkable advantage when comparing
to other transfer syntaxes, such as the XDR for example, discussed in
Chapter 24.

15In many encryption applications, the values of open types cannot be decoded on
the fly: the octet string is transferred to the receiver for authentication. It is only
once the authentication is completed that the string is actually decoded.

414 ASN.1 – Communication between Heterogeneous Systems

The transfer syntax of the BER is quite verbose: the T tag field
can often be deduced from the abstract syntax and the L length field is
sometimes redundant when a SIZE subtype constraint is applied. This
verbosity, however, sometimes offers some noteworthy advantages. Since
it preserves the structure of the abstract syntax, the BER transfer syn-
tax makes upgrading the protocol easier thereby ensuring the upward
compatibility.

The specification can, therefore, be extended replacing a type by a
CHOICE where one of the alternatives is this very type since a CHOICE is
‘encoded’ according to the alternative that is chosen:

T ::= IA5String -- old version

T ::= CHOICE {

iA5String IA5String,

universalString UniversalString } -- new version

Besides, if a decoder generated according to some old version of a spec-
ification (the IA5String type) receives a value for the universalString

alternative of the CHOICE, it has enough information to discard this value
since the length of its encoding V is given by the L field: it can ignore L
octets and carry on decoding the other octets of the stream.

For the same reason, a decoder can ignore unexpected extra fields in a
SEQUENCE or SET type. In other words, the BER have always implicitly16

supported the concept of extensibility which was introduced in 1994
with the “...” extension marker. The ENUMERATED types and the subtype
constraints can be extended while preserving the encoding compatibility
since the transfer syntax of the BER does not depend in any way on the
boundaries of an interval nor on size limits.

If the complete abstract syntax is tagged in EXPLICIT mode (see
Section 12.1.3 on page 213), the encoding includes tag fields T that
contain the tags of class UNIVERSAL of the ASN.1 types. A receiver may
then decode the stream without knowing the abstract syntax (i.e. the
ASN.1 specification) and display the data in a more user-friendly layout:
a boolean value can be presented as ‘TRUE’ or ‘FALSE’, the components
of a sequence may be neatly printed out one above the other...

The systematic presence of the length field L allows the user (if the
compiler supports it) to choose the most appropriate size for communi-
cating applications, should this be absolutely required (for example, an
even length for 16-bit architecture computers).

16It is, in fact, the Presentation layer that should ignore undefined elements
[ISO8823-1, clause 8.5.1.a].

18 - Basic Encoding Rules (BER) 415

Even after the additions and modifications of the ASN.1 and BER
standards in 1994 and 1997, these encoding rules have of course re-
mained compatible with those of 1990. Generally speaking, the migra-
tion of a module from ASN.1:1990 to ASN.1:1994/97 (see Section 6.4.2
on page 73) preserves interworking. The fact that the BER have been
for quite a long time the only encoding rules associated with ASN.1
favoured the development of numerous compilers, some of which are in
the public domain.

In some cases, these advantages may turn into drawbacks: since
many values are not encoded on a fixed length, the decoder takes some
time to pick them out from the stream; so the encoding and decod-
ing procedures often tie up most of the computing resources to convert
the data from the internal data model to the transfer syntax’s format
and reverse. The running time is obviously a crucial issue for real-time
applications and high speed networks. [Lin93] shows that, under some
realistic conditions, it is possible to use very fast encoders and decoders
for BER. As for the encoding size, we will see in Chapter 20 the notable
improvement induced by the packed encoding rules (PER).

The consequence of this variety of options for the implementation
is that a decoder must support all these different possibilities whereas
an encoder may offer only a few of them. For this reason, decoding is
generally computationally more expensive than encoding. To get round
this difficulty, one of the specializations of the BER presented in the
next chapter can be used.

18.4 A complete example

To conclude this chapter, we propose a complete encoding of a relatively
simple type to illustrate the aspects of the BER discussed earlier17:

MyHTTP DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

GetRequest ::= SEQUENCE {

header-only BOOLEAN,

lock BOOLEAN,

accept-types AcceptTypes,

url Url,

... }

17This example is adapted from http://www.w3.org/Protocols/HTTP-NG/asn1.html.

http://www.w3.org/Protocols/HTTP-NG/asn1.html

416 ASN.1 – Communication between Heterogeneous Systems

AcceptTypes ::= SET {

standards BIT STRING {html(0), plain-text(1), gif(2),

jpeg(3)} (SIZE (4)) OPTIONAL,

others SEQUENCE OF VisibleString (SIZE (4)) OPTIONAL }

Url ::= VisibleString (FROM ("a".."z"|"A".."Z"|"0".."9"|

"./-_~%#"))

v GetRequest ::= {

header-only TRUE,

lock FALSE,

accept-types { standards {html,plain-text} },

url "www.asn1.com" }

END

Since all the components of the GetRequest and AcceptTypes types
are automatically tagged (in the context-specific class) by one-increment
starting from 0, the value v is therefore encoded as the following octet
string (quite informally represented):

[UNIV. 16]

001 1610

L

2610
V

header-only 100 010 110 3610

lock 100 110 110 010

accept-types.standards 101 210 410 (100 010 210 (610 11xxxxxx))

url 100 310 1210 "www.asn1.com"

The BER encoding and decoding of this value, using first the definite-
length form and second the indefinite-length form, are simulated in Ap-
pendix A on page 499.

Chapter 19

Canonical and
Distinguished Encoding
Rules (CER and DER)

Contents

19.1 A need for more restrictive rules 418

19.2 Canonical Encoding Rules (CER) 422

19.3 Distinguished Encoding Rules (DER) 422

Whatever the preference my esteem should
be based on,
To estimate all is to estimate none [...]
I want to be distinguished; and to put it
bluntly,
To please human kind bears no interest to me.

Molière, The Misanthrope.

In 1992, the need for encoding rules that could be rid of the BER en-
coding options became more and more urgent, particularly for appli-
cations that relayed information associated with a digital signature but
also because these numerous encoding options made compliance tests for
protocols time-consuming and expensive (see Section 23.2 on page 480).

418 ASN.1 – Communication between Heterogeneous Systems

Sender
v, c1(v), σ(c1(v))

Relay
v, σ(c1(v))

Receiver
v, σ(c2(v)) =? σ(c1(v))

c1(v) σ(c1(v)) c2(v) σ(c1(v))

Figure 19.1: Relay of a message v and its digital signature σ with an
initial encoding c1 and second encoding c2

The purpose of the Canonical Encoding Rules (CER) and the Dis-
tinguished Encoding Rules (DER) was to meet those demands by spe-
cializing the basic encoding rules (BER); they were included in the
[ISO8825-1] standard in 1994.

19.1 A need for more restrictive rules

This need was at first put forward by X.400 e-mail and X.500 directory
developpers who wanted to provide a digital signature when transmitting
a value to make sure the bit string was not altered during transfer. The
X.509 digital signature can1 be obtained by applying a hash function
on the bit string generated by the encoder, and then by encrypting the
result with a private key.

Figure 19.1 presents the problem sometimes encountered if the data
are relayed by some intermediate systems. If the sender has to transmit
the value v, it first encodes it and computes the digital signature σ of the
resulting encoding c1(v). This encoding c1(v) is then sent along with the
digital signature σ(c1(v)). The relay decodes the value v and keeps the
digital signature2. It re-encodes v using a procedure c2 possibly different
from c1 and associates the digital signature σ(c1(v)) with the encoding
c2(v) obtained. The receiver, who knows the encryption key computes
the digital signature σ(c2(v)) of the bit string and compares it with the
digital signature σ(c1(v)) of the sender.

1Most other signature schemes, such as elliptic curve, do not encrypt the hash. But
this point is not important here, for this book is not dedicated to digital signatures
and encryption.

2We obviously assume that the relay is not part of the secured architecture, so
that it does not know the encryption key.

19 - Canonical and Distinguished Encoding Rules (CER and DER) 419

The pre-requisite necessary for the principle of secured data transfer
is that the relay re-encodes3 the value v in the same way as it was
received, i.e. c1(v) = c2(v) for all value v. But as we have seen in the
previous chapter the BER encoding rules give way to degrees of freedom
when implementing an encoder and when encoding: for example, if the
value v in Figure 19.1 on the preceding page includes the boolean TRUE,
it is impossible to ensure that the BER encoder of the sender and that of
the relay will associate the same (non-null) octet with this value. This
counter-example is enough to conclude that the BER cannot meet the
specific needs of e-mail and directory applications.

Generally speaking, encoding rules that leave no degrees of freedom,
whether it is for their implementation or dynamically during the encod-
ing, are called canonical. Two sets of canonical rules derived from the
BER were standardized in 1994: the Canonical Encoding Rules (CER)
and the Distinguished Encoding Rules (DER). These are specializations
of the basic encoding rules, which means that a BER decoder can de-
code a bit stream generated by a CER or DER encoder. The reverse is
obviously false.

The two sets of encoding rules offer the interesting property of estab-
lishing a bijection between abstract values (of a given PDU) and their
encoding: for every ASN.1 abstract value we can map a single octet
string and vice versa, for any octet string there exists a single corre-
sponding abstract value. Using this property, the receiving application
can compare the octet stream it receives with a given octet string with-
out knowing the value it respectively corresponds to (and even ignoring
the abstract syntax of the protocol involved).

The key difference between the two sets of encoding rules is that the
CER associate an indefinite-length format with the constructed form
encoding whereas the DER use a definite-length format. As a result,
the CER are mainly aimed at applications which have to transfer great
amount of data. Table 19.1 on the next page summarizes the restrictions
imposed by the CER and DER to the BER.

3It is interested to notice that, should the relay and the receiver not first de-
code then reencode what they receive, there would be no reason for using canonical
encoding rules such as DER or CER.

420 ASN.1 – Communication between Heterogeneous Systems

CER DER

Length field L (see Figure 18.3 on page 396)
- L is in definite length on the mini-
mum number of octets if the encod-
ing is in primitive form (short def-
inite form if L 6 127, long definite
form otherwise)

- L is in definite length on the min-
imum number of octets whether the
encoding is in primitive or in con-
structed form

- L is in indefinite length if the en-
coding is in constructed form

BOOLEAN value

- the TRUE value is encoded as 11111111

REAL value (see Figure 18.5 on page 401)
- if the base component equals 10, a real value is encoded as a character
string of NR3 format without spaces [ISO6093]; it has no “+” sign if the
number is positive; the dot is the decimal separator; the mantissa must
not begin nor end with zeros; it is followed by a dot and the E character;
the exponent must not use the “+” sign nor begin with a 0 but for the
null exponent denoted “+0”

- [X.509] forbids base-10-real values
in the Directory applications

- if base = 2, a real value is binary-encoded with mantissa M and exponent
E so that the mantissa equals 0 or is an odd number; the mantissa and
the exponent are encoded on the minimum number of octets; the scale
factor F equals 0

BIT STRING value
- the unused bits in the last octet equal 0
- if the type includes a named bit list, the trailing 0 bits are not encoded;
if the type includes a SIZE constraint, the value delivered by the decoder
to the application must nevertheless respect it (i.e. trailing 0 bits are
added if necessary); if the string includes no 1-bit, it is encoded as a
value of length 1 as an octet set to 0

BIT STRING or OCTET STRING value, character string
- if the string comprises less than
1,000 octets, the encoding is in prim-
itive form

- primitive form encoding only

- otherwise it is encoded as a con-
structed form and every subdivision
but the last (if needed) consists of
1,000 octets

GeneralString value
- escape sequences must only be used when the requested character set
differs from the usual C0, C1 and G sets (see also the defect report
http://www.furniss.co.uk/maint/asn/dr8825 1 005.htm)

.../...

Table 19.1: CER and DER restrictions on BER

http://www.furniss.co.uk/maint/asn/dr8825_1_005.htm

19 - Canonical and Distinguished Encoding Rules (CER and DER) 421

CER DER
.../...

GeneralizedTime or UTCTime value
- seconds are not compulsary; no meaningless 0 in fractions of seconds;
no decimal dot if there is no fraction of seconds
- the value must be in universal time coordinate (“Z” suffix)
- for the GeneralizedTime type, the decimal dot “.” must be used

SEQUENCE or SET value
- the components that equal their default value are never encoded (all the
ASN.1 compilers may not be able to perform this test if the constructed
types are too complex)

SET value
- the components are encoded in the canonical ascending order of their
tag (see rule 〈15〉 on page 228); if the module includes the clause
AUTOMATIC TAGS in its header, the order of the specification is kept
- when a component is an untagged
CHOICE, it is ordered as if it had the
smallest tag of its alternatives (static
sort)

- when a component is an untagged
CHOICE, it is ordered as if it had the
tag of the alternative retained in the
value (dynamic sort)

- to avoid this sort step, it is recommended to use a SEQUENCE type in the
ASN.1 specification instead

SET OF value
- the elements are sent in the ascending order of their encoding: these
encodings are compared as octet strings adding trailing null octets if
needed for comparison’s sake only
- to avoid this dynamic sort, it is recommended to use a SEQUENCE OF

type in the ASN.1 specification instead
EXTERNAL, EMBEDDED PDV or CHARACTER STRING value

- the encoding can be relayed only if the abstract syntax includes subtype
constraints to avoid transferring the presentation context identifier, for
example:
EMBEDDED PDV (WITH COMPONENTS {...,
identification (WITH COMPONENTS { ...,

presentation-context-id ABSENT,

context-negotiation ABSENT })})
- character transfer syntaxes associated with character abstract syn-
taxes registered under {iso standard 10646 level-1(1)} are canonical;
otherwise, values that conform to abstract syntaxes registered under
level-2(2) or level-3(3) can still be relayed

Table 19.2: CER and DER restrictions on BER (continued)

422 ASN.1 – Communication between Heterogeneous Systems

19.2 Canonical Encoding Rules (CER)

Historically, the canonical encoding rules were designed after the distin-
guished encoding rules. They were registered with the object identi-
fier {joint-iso-itu-t asn(1) ber-derived(2) canonical-encoding(0)}
in the registration tree of Figure 10.4 on page 161 and are documented
by the object descriptor "Canonical encoding of a single ASN.1 type"

(see Section 11.15 on page 198).

They are more particularly suited for applications with potentially
important encodings such as the office document architecture (ODA), for
example. Indeed, if the encoded value becomes larger than the memory
space available for the encoder, it is possible to start emitting before
having completed the whole value’s encoding since the CER encode the
constructed values’ length in indefinite format.

The differences between the CER and the BER are summarized in
Table 19.1, which starts on page 420. The canonical encoding rules are
hardly ever used in practice because few compilers can generate such
encodings. This is therefore the DER that are generally considered as
the canonical encoding rules by default.

19.3 Distinguished Encoding Rules (DER)

The DER derive from the constraints imposed on the BER by the
standard of the Directory authentication framework [X.509, clause 8.7].
They are registered with the object identifier {joint-iso-itu-t asn1(1)

ber-derived(2) distinguished-encoding(1)} in the registration tree of
Figure 10.4 on page 161 and are documented by the object descriptor
"Distinguished encoding of a single ASN.1 type" (see Section 11.15
on page 198).

They are particularly designed for secured data transfer, and more
specifically when a digital signature is used. For this reason, the DER
have an up-and-coming career in the context of electronic business on
the Internet. They can also be used by applications that need transfer-
ring data of average size. Indeed, the application needs to have enough
memory space for encoding a value because the DER systematically use
the definite length format. This can be an asset for the receiving appli-
cations that may need to ignore part of the stream: since each segment
is preceded by its length it is easy to know the number of octets to
discard.

19 - Canonical and Distinguished Encoding Rules (CER and DER) 423

The differences between the DER and the BER are summarized in
Table 19.1, which starts on page 420. The DER encoding/decoding of
the example of Section 18.4 on page 415 is simulated in Appendix A on
page 499.

424 ASN.1 – Communication between Heterogeneous Systems

Chapter 20

Packed Encoding Rules
(PER)

Contents

20.1 Main principles of PER 426

20.2 The four variants of encoding 428

20.3 PER-visible subtype constraints 429

20.4 Encodings of a whole number 435

20.5 Length field encoding 438

20.6 Encoding of all types . 440

20.7 A complete example . 451

Monsieur Jourdain. — Mahametta per
Jordina.
Madame Jourdain. — What does this mean?

Molière, Le Bourgeois gentilhomme.

The criticism expressed towards the Basic Encoding Rules regarding
their cost in terms of size (50% extra cost in average compared to the
actual data to encode) naturally lead to the development of the Packed
Encoding Rules or PER. The gain1 in size is 40 to 60% at least compared

1There exists, however, a few (totally useless) cases, in particular when using
extensibility, where the BER encoding prove less expensive than its counterpart in
PER.

426 ASN.1 – Communication between Heterogeneous Systems

with the BER encoding of the same protocol (not necessarily optimized
for PER encoding).

These encoding rules are therefore particularly appropriate for pro-
tocols that need to transfer data at a high rate in domains like telephony
over the Internet, videophone and multimedia in general, to mention but
a few.

20.1 Main principles of PER

The golden rule of the PER can be stated as follows: ‘obtain the most
compact encoding using encoding rules as simple as possible’. To do so,
a tool for generating PER encoders and decoders applies to the ASN.1
specification more accurately than it does for BER. We shall see that
while providing a more compact encoding for ASN.1 primitive types
than the BER, a PER compiler also relies on some subtype constraints
of the specification to go further in this compression. The impatient
reader may refer straight away to Table 20.1 on the next page to be
convinced.

Instead of using a systematic recursive format in triplets TLV 〈tag,
length, value〉 of the BER, the PER format could be interpreted as
‘[P][L][V]’ 〈optional preamble, optional length, optional value〉 where
the fields P, L and V are no longer series of octets but series of bits. The
rest of this chapter will present this format in detail but it is already
straightforward that by giving up the systematic use of the TLV format,
we remove the BER’s criticized overload due to the octets of tag and
length fields (T and L). A contrario, the absence of a length field (and
even of a value field in some cases) induces a loss of boundaries in the
encoding; the receiving application will be able to decode the bit stream
only by referring to the ASN.1 specification.

Without the T tag field the PER encoding has no longer the prop-
erty of implicitly supporting the extensibility; this extensibility should
therefore be planned and stated from the very first version of the specifi-
cation by inserting the extension markers “...” in every type that may
be extended in the future (see Section 12.9 on page 244).

20 - Packed Encoding Rules (PER) 427

BER PER
definite aligned
length variant

v INTEGER (123456789..123456792) ::= 123456790 6 octets 2 bits
v INTEGER (123456789..MAX) ::= 123456790 6 octets 2 octets
v INTEGER ::= 123456790 6 octets 5 octets

v IA5String (SIZE (4)^FROM ("ACGT")) ::=

"TGAC"
6 octets 1 octet

v IA5String (FROM ("ACGT")) ::= "TGAC" 6 octets 2 octets
v IA5String (SIZE (4)) ::= "TGAC" 6 octets 4 octets
v IA5String ::= "TGAC" 6 octets 5 octets

v SEQUENCE OF BOOLEAN ::=

{-- 64 elements --} 195 octets 9 octets

v SEQUENCE SIZE (64) OF BOOLEAN ::=

{-- 64 elements --} 195 octets 8 octets

v SEQUENCE OF INTEGER (0..65535) ::=

{-- 64 elements --} 195 octets 129 octets

v SEQUENCE { a INTEGER (0..7),

b BOOLEAN,

c INTEGER (0..3),

d SEQUENCE { d1 BOOLEAN,

d2 BOOLEAN }} ::=

{ a 5,

b TRUE,

c 1,

d { d1 TRUE,

d2 TRUE }}

19 octets 1 octeta

aThis example demonstrates that a PER encoder is sometimes more interesting
(and remains generic) than a bespoke encoder developed ‘by hand’ to optimize the
transmissions for a particular protocol.

Table 20.1: Comparison of encoding size between BER and PER

428 ASN.1 – Communication between Heterogeneous Systems

[P] [L] [P] [L] [V] [P] [L] [V] ...

fragmentation of a value of great length (L > 64 K):

[P] L V L V L V L V L [V]

(P = preamble, L = length, V = value)

Figure 20.1: Recursive formats of the PER transfer syntax

It is now clear that tags are never encoded in PER2. A length field L is
encoded only if the size has not been fixed by a SIZE subtype constraint in
the ASN.1 specification or if the data size is important (see Figure 20.1).
The encoding of values of type SEQUENCE or SET is preceded by a bit-
map which indicates the presence or absence of optional components.
Similarly, an index indicates the alternative retained in a CHOICE type
before encoding the value associated with this alternative.

Though not designed at first for this purpose, the PER provide en-
coders and decoders that generally take less processing time than their
BER counterparts, which goes against a common belief (it obviously de-
pends on the ASN.1 specification, but twice as fast procedures are not
unusual). Indeed, many factors are determined statically, i.e. once for
all during the compilation stage, and integrated in the encoder and in
the decoder. Besides, transfer is also faster than for BER because the
lowest layers of the network stack deal with shorter frames. There are
few PER compilers on today’s market (and none in the public domain)
probably because they are much more difficult to develop (and maybe
also because the [ISO8825-2] standard is not quite so easy to read!).

20.2 The four variants of encoding

The packed encoding rules break down into two categories: basic and
canonical, and either can be of the aligned or unaligned variant. The
advantages of the canonical form are those already mentioned in Chap-
ter 19 for the canonical and distinctive encoding rules: this form is more
specifically adapted to relay systems and secured applications for which

2They remain, however, compulsary in the ASN.1 specification (they are used for
example to order the components when encoding in PER a value of type SET), even
though an AUTOMATIC TAGS clause in the module header spares the trouble of complying
with the condition on distinct tags.

20 - Packed Encoding Rules (PER) 429

values are authenticated by a digital signature. In basic form, the ab-
stract value may have several PER encodings whereas it has only one
in canonical form. On the other hand, for the tests are limited, the
basic-form encoder will run faster than a canonical encoder.

In aligned variant, padding 0 bits are inserted when needed to restore
the octet alignement3. The unaligned variant is far more compact but
encoding and decoding require much more time-consuming processing.
In the second variant, the octet alignment is never re-established, which
means that all the bits are used without exception. Only the whole
protocol data value (PDV) is (often but not necessarily) padded with
trailing zero bits so that the overall number of bits could be a multiple of
8 and could, therefore, be stored in a file, transmitted through a network
or used as a value for an open type (see Section 20.6.11 on page 445).

If the complete encoding is empty (when the type is restricted to a
single value for example) a null octet is transmitted.

The aligned and unaligned variants cannot interwork, that is to say
that an aligned-variant decoder (say) cannot decode the bit stream sent
by an unaligned-variant encoder. The basic unaligned variant is the most
compact. In decreasing order, then we have the canonical unaligned
variant, the basic aligned variant and the canonical aligned variant.

In the context of a transfer syntax negotiation on the Presenta-
tion layer (see Figure 3.2 on page 22), we indicate the variant of PER
encoding to be used with one of the four object identifiers beginning
with {joint-iso-itu-t asn1(1) packed-encoding(3)} presented in Fig-
ure 10.4 on page 161. The PER variants supported by a protocol can be
specified in an international standardized profile (or ISP, see footnote 3
on page 378).

20.3 PER-visible subtype constraints

In order to compress at best the encoding, the PER rely on the nu-
merous subtype constraints of the ASN.1 specifications. These allow
the encoding procedure to limit or even suppress the length field L and
the value field V. When dealing with protocols for which data transfer
rate is an important factor, the specifier should take care of introducing
sensible subtype constraints to obtain the most compact encoding as

3In Sections 20.4 and 20.5, only the length and value fields mentioned ‘octet-
aligned in aligned variant’ are preceded by padding 0 bits so that they start on an
octet boundary.

430 ASN.1 – Communication between Heterogeneous Systems

possible (Table 20.1 on page 427 has nevertheless shown that the gain
was already noticeable for a non-optimized specification).

We shall see that the constraints taken into account by PER are
those which are the most frequently used in ASN.1 specifications: this
choice allows easier implementation of PER compilers (or development
of encoding and decoding routines ‘by hand’). For the same reason, only
the most simple constraint combinations (using set operators) have been
retained. Besides, these constraints do not slow down the encoding or
decoding real-time process since their evaluation is statically done when
compiling.

The only PER-visible constraints, i.e. the constraints that PER take
into account, are:

• single value and value range constraints (both of which may be
composed with the vertical bar “|”) if applied to an INTEGER type:

T1 ::= INTEGER (40|50)

T2 ::= INTEGER (25..30)

In case of set combinations of constraints, these are reduced by
the compiler to a single constraint called effective, which is the
smallest interval that satisfies the constraint combination ;

• constraints by type inclusion applied to an INTEGER or character
string type if the type referenced in the constraint includes only
PER-visible constraints:

T3 ::= INTEGER (T2)

C1 ::= IA5String (FROM ("A".."Z"))

C2 ::= IA5String (C1|FROM ("a".."z"))

• size constraints:

T4 ::= PrintableString (SIZE (100..120))

In case of set combinations of size constraints, these are reduced by
the compiler to a single effective constraint, which is the smallest
interval that satisfies the constraint combination4; thus:

T5 ::= BIT STRING (SIZE (1..4)|SIZE (10..15))

4The notion of effective constraint is not quite defined like this in the [ISO8825-2]
standard. Our definition is simpler and amounts to the same thing in terms of en-
coding. Indeed, it is the interval that matters and not the number of its values that
are actually used.

20 - Packed Encoding Rules (PER) 431

is reduced (only for encoding’s sake) in:

T5 ::= BIT STRING (SIZE (1..15))

(the fact that there can be no strings of type T5 with a length
between 5 and 9 is not significant);

• alphabet constraints applied to a known-multiplier character string
type (see Table 11.1 on page 175) if it includes no extension marker:

T6 ::= NumericString (FROM ("0".."9"))

in case of set combinations of alphabet constraints, these are
reduced by the compiler to a single effective constraint that en-
compasses5 all the contraints:

T7 ::= IA5String (FROM ("AT")|FROM ("GC"))

is reduced (only for encoding’s sake) to:

T7 ::= IA5String (FROM ("ATGC"))

• set combinations (using UNION, INTERSECTION, ALL and EXCEPT op-
erators) of PER-visible constraints6 will be reduced by a compiler
to a single effective constraint such that the value set it allows
could be the smallest interval (for size or single-value constraints)
or the smallest set (for alphabet constraints) that includes the re-
sult of the combination of constraints; for example, the effective
constraint associated with the type:

T8 ::= INTEGER (T1|T2)

5This method for computing the effective constraint is not quite that of the stan-
dard (more particularly what can be found in [ISO8825-2, Section B.2], though not

a normative part of the Standard), but this standard is very likely to be amended
according to what is presented here.

6As a consequence, a type like:

C3 ::= IA5String ("TAGC"|SIZE (1..10))

has no effective constraint (because the single-value constraint is not PER-visible
when applied to a character string type). Similarly, the type:

C4 ::= IA5String (C3 ^ SIZE (5))

has no effective constraint because the constraint by type inclusion using C3 includes
a non PER-visible constraint (single-value constraint). This rule makes the effective-
constraint combinations easier to compute for an ASN.1 compiler.

432 ASN.1 – Communication between Heterogeneous Systems

is (25..50) because it is the smallest interval including all the
values of type T1 and all those of type T2. In case of combinations
of alphabet and size constraint such as:

T9 ::= IA5String (FROM ("AB")^SIZE (1..2)

|FROM ("DE")^SIZE (3)

|FROM ("ABDF")^SIZE (4..5))

the effective constraint7 is (FROM ("ABDEF")^SIZE (1..5)). In
practice, the constraint combinations encountered in specifica-
tions do not have such a complexity and determining the effective
constraint is no problem;

• WITH COMPONENTS constraint applied to CHARACTER STRING and
EMBEDDED PDV types if it consists in restricting the syntaxes compo-
nent to a single value or reducing the identification component to
the fixed alternative (see Figure 14.3 on page 305 and Figure 14.4
on page 307);

• if a type is followed by multiple constraints one after the other,

the PER-non-visibility of one constraint has no effect on the PER-
visibility of the other constraints:

T10 ::= IA5String (SIZE (1..2))("AB")(FROM ("A".."F"))

this type has an effective size constraint which is (SIZE (1..2))

and an effective permitted alphabet constraint which is (FROM

("A".."F"));

• if constraints are extensible (and extended), the effective con-
straints are computed considering only the extension roots of the
constraints8 (even though the extensions may contain constraints
that are not PER-visible).

The ASN.1 working group are now considering simplifying the no-
tions of ‘PER-visible constraints’ and ‘constraints extensible for PER
encoding’ to make them more straightforward and easier to implement.
None of these potential changes will of course affect the encoding of
constraints that are generally used in specifications.

8Note that the set of values that corresponds to the effective constraint can be
bigger than the set of values corresponding to the constraints’ extension roots. From
the PER viewpoint, a value is encoded with its extensibility bit set to 1 if it does not
conform to the extension root of the constraint as described in the ASN.1 specification.

20 - Packed Encoding Rules (PER) 433

Type PER-visible constraints

BOOLEAN none
NULL none
INTEGER single value (see on page 260), value

range (see on page 263), type inclusion
(see on page 261), set combination (see
on page 285), constraint extensibility
(see on page 291)

ENUMERATED none
REAL none
BIT STRING, OCTET STRING SIZE (see on page 266), set combination

(see on page 285), constraint extensibil-
ity (see on page 291)

OBJECT IDENTIFIER none
NumericString, PrintableString,
VisibleString, ISO646String,
IA5String, UniversalString,
BMPString

FROM (see on page 268), SIZE (see
on page 266), type inclusion (see on
page 261), set combination (see on
page 285), extensibility of the SIZE con-
straint (see on page 291)

not-known-multiplier character
string types (see Table 11.1 on
page 175)

none

GeneralizedTime, UTCTime,
ObjectDescriptor

none

open type (see rule 〈3〉 on
page 347)

none

SEQUENCE, SET none
SEQUENCE OF, SET OF SIZE (see on page 266), set combina-

tion, constraint extensibility (see on
page 291)

CHOICE none
EXTERNAL none
EMBEDDED PDV, CHARACTER STRING WITH COMPONENTS (see on page 277) to

restrict the alternative syntaxes to a se-
quence of two fixed object identifiers or
force the component identification to
adopt the alternative fixed

Table 20.2: PER-visible constraints

434 ASN.1 – Communication between Heterogeneous Systems

The effective constraints presented above can be easily implemented.
These constraints are summarized in Table 20.2 on the page before.
Remember that subtype constraints apply to abstract values and need
to be interpreted to evaluate how much they impact the transfer syntax:
the type UniversalString (SIZE (4)), for example, contains 4-character
(abstract) strings encoded on 4× 4 = 16 octets.

All the other constraints and constraint combinations do not influ-
ence the PER encoding of a value. This does not mean, of course, that
they are systematically ignored by a compiler. It may use them to gen-
erate encoders that check the conformity of the value to be transmitted
by the sending application and decoders that detect values that do not
respect these constraints. The non-PER-visible constraints are in par-
ticular:

• single value constraints on types other than INTEGER;

• alphabet constraints that include an extension marker and
regular expression constraints ;

• constraints by type inclusion on types other than INTEGER and
known-multiplier character string types;

• constraints on not-known-multiplier character string types (see Ta-
ble 11.1 on page 175);

• combinations (and in particular set combinations) of constraints if
some of them (when appearing in the extension root of the com-
bination) are not individually PER-visible;

• constraints introduced by the keywords WITH COMPONENT and WITH

COMPONENTS. Generally speaking, these are not PER-visible because
they can make the compiler task too complicated if several con-
straints apply on the same components;

• constraints including parameters of the abstract syntax;

• table and component relation constraints because the value set
resulting from the information extraction is not necessarily fixed
(see Section 15.6 on page 336);

• user-defined constraints (introduced by the keywords CONSTRAINED

BY) and (obviously!) comments.

20 - Packed Encoding Rules (PER) 435

From the PER viewpoint, a type is extensible if it includes an exten-
sion marker (for the ENUMERATED, SEQUENCE, SET and CHOICE types) or if
it is followed by a PER-visible subtype constraint (other than an alpha-
bet constraint FROM) that includes an extension marker (see Table 20.2
on page 433). It is important to note that, conversely, all extensible
constraints will not necessarily produce an extensibility bit in PER en-
coding. We will see that this is no contradiction: if a type followed by an
extensible non-PER-visible constraint in an ASN.1 specification is not
extensible from the PER standpoint then all the values (in the root or in
the extensions) can be encoded because all constraints will be ignored.

If the effective constraints are altered between two versions of a spec-
ification (this is only possible if the specification is modified without fol-
lowing ASN.1 extensibility rules), the encoding is no longer compatible,
which implies that if an application has an old version of a specification
of the protocol, it will not interwork with another one that would be
based on the new version.

A quite subtle case may occur for a specification that would include
an extended constraint in its first version, so that the union of the root
and the extension would contain all the values of the parent type as in:

PositiveInteger ::= INTEGER (0..4, ..., 5..MAX) -- version 1

If we assume that values between 1 and 4 are very often sent, such a
type has the advantage of providing a very compact encoding (on 3 bits)
of these values without forbidding the other (positive) integers.

20.4 Encodings of a whole number

In this preliminary section, we present four forms of encodings, which
will be frequently used in the rest of this chapter. Every one of the four
forms amounts to the encoding of a non-negative whole number9.

The non-negative whole numbers will be involved each time we will
have to encode a length field L, the size of a bit-map indicating the
extensions that are present in a SEQUENCE or SET value, the index of the
alternative retained in a CHOICE, or the distance from a value of INTEGER

type to the minimum boundary of a value range constraint.

9The standard and self-explicit term ‘non-negative whole number’ has been pre-
ferred to the more concise stock phrase ‘natural number’, which is more common in
the Number Theory literature.

436 ASN.1 – Communication between Heterogeneous Systems

Z
bmin n bmax

n− bmin (encoded value)

d = bmax − bmin + 1
= range of the interval [bmin ; bmax]

Figure 20.2: Encoding principle of a constrained whole number

Let us describe more thoroughly the latter case. We have discussed
the PER-visible constraints in the previous section. Every time
an ASN.1 specification restricts an INTEGER type with an effective
constraint that is an interval, say (bmin..bmax), it proves less costly
to encode the difference between the value and the lower bound bmin ,
particularly when this lower bound is large enough (see Figure 20.2).

Constrained whole number encoding
n is a constrained whole number if it belongs to an interval whose bound-
aries bmin and bmax are finite: n ∈ [bmin ; bmax]. Let d = bmax−bmin+1 be
the interval range. If d = 1, the only possible value is n = bmin = bmax , it
is known by both the sender and the receiver so it is not worth encoding
it.

In aligned variant,

• if 2 6 d 6 255, n − bmin is encoded in binary form on the mini-
mum number of bits necessary for representing the range d of the
interval, i.e. dlog2 de bits (where log2 represents the logarithm in
base 2 and d e gives the whole number that equals or is immedi-
ately greater than its argument); these bits are appended (without
being octet-aligned) to the bit-field to be sent (the length field L
is absent);

• if d = 256, the offset n − bmin is encoded on one octet, which is
octet-aligned when appended to the bit-field (the length field L is
absent);

• if 257 6 d 6 65,536, n− bmin is encoded on two octets, which are
octet-aligned when appended to the bit-field (the length field L is
absent);

• if d > 65,537, n−bmin is encoded on the minimal number of octets

20 - Packed Encoding Rules (PER) 437

(which are octet-aligned) necessary for representing the interval
range d, i.e. dlog256 de octets; this number of octets is encoded
beforehand in a length field L as a constrained whole number.

In unaligned encoding, n − bmin is encoded in binary form on the
minimum number of bits necessary for encoding the interval range, i.e.
dlog2 de bits; there is no length field L.

Semi-constrained whole number encoding
n is a semi-constrained whole number if it equals or is greater than
a finite lower bound: n ∈ [bmin ; +∞[. n − bmin is encoded on the
minimum number of octets (octet-aligned in aligned variant), i.e.
dlog256(n − bmin)e octets. This number of octets is first encoded in a
length field L as described in Section 20.5.

Unconstrained whole number encoding
A whole number is said to be ‘unconstrained’ if it has no lower bound
(even if it is always smaller than an upper bound).

As expected, an unconstrained whole number n is encoded in
2’s-complement (and octet-aligned in aligned variant) on the minimum
number of octets as explained for the BER encoding rules in Figure 18.4
on page 399. Remember that the principle of 2’s-complement represen-
tation supports a negative sign for the number n. The number of octets
is first encoded in a length field L as described in Section 20.5.

Normally small non-negative whole number encoding
This slightly singular terminology denotes the length of the bit-map
that ientifies the extensions present in a value of SEQUENCE or SET type,
or the index associated with the alternative retained in a CHOICE type.
This length is usually quite small but is not limited. It should also be
transmitted before encoding, as a value of an open type, the components
or alternatives corresponding to extensions in SEQUENCE, SET or CHOICE

types.

Let n be a normally small non-negative whole number:

• if 0 6 n 6 63, a 0-bit is appended to the bit-field (without being
octet-aligned), followed by the binary encoding of n on 6 bits:
0nnnnnn10;

10We close these boxes on neither sides to distinguish them from octets.

438 ASN.1 – Communication between Heterogeneous Systems

• if n > 64, a 1-bit is appended to the bit-field (without being octet-
aligned), and n is encoded as a semi-constrained whole number
with bmin = 0 (preceded by its length field L as described in Section
20.5): 1...L......n...

20.5 Length field encoding

Contrary to the BER for which the length field always represents the
number of octets necessary for encoding the value, this field, when
present, can be expressed in bits if the value is encoded as a series of
bits, in octets if the value is encoded as a series of octets (for the OCTET

STRING and open types), in characters when encoding a known-multiplier
character string or as elements if the value is of SEQUENCE OF or SET OF

type.

Each time the ASN.1 specification limits a type’s size with an effec-
tive constraint of the form (SIZE (lmin..lmax)) (where lmax can be +∞),
the length l of the value is encoded as a constrained (or semi-constrained
if lmax = +∞) whole number according to the previous section. In par-
ticular, if lmin = lmax 6 65,535, the length is not sent since it is known
by the decoder. Similarly, if a value is not encoded because it is the only
way to proceed in accordance with the specification, the length is null
and it is not sent either.

In aligned variant:

• if l is the length of a bit-map, l− 1 is encoded as a normally small
non-negative whole number (see previous section);

• if lmax 6 65,535, l is encoded as a constrained whole number on
the interval [lmin ; lmax];

• if lmax > 65,536 (i.e 64 K)11 or if the upper bound lmax is infinite
(or else if l > 65,536):

– if l 6 127, l is encoded on one (octet-aligned) octet whose
high-order bit equals 0: 0l l l l l l l;

– if 128 6 l 6 16,383, l is encoded on two (octet-aligned) octets
whose two high-order bits equal 1 and 0: 10l l l l l l l l l l l l l l,

which gives for example if l = 130: 10000000 10000010;

11‘K’ is the computing constant that equals 1,024.

20 - Packed Encoding Rules (PER) 439

– if l > 16,384 (i.e. 16 K), the encoding is fragmented in units
of length f×16 K, where f equals 1, 2, 3 or 4 (to keep the size
of the fragments to a reasonable length), which means that
the value is fragmented in packets of 16,384, 32,768, 49,152 or
65,536 units12; for each fragment, we determine the greatest
value13 of f such that f×16 K equals or is smaller than what
remains to be sent; before encoding this fragment, we insert
a length octet (octet-aligned in aligned variant) for which the
two high-order bits are 1 and the six low-order bits represent
the value of f . If the last fragment’s size is a multiple of 16 K,
it is followed by a null octet (which can be interpreted as a
length field not followed by a value field), otherwise this last
fragment (which is necessarily smaller than 16 K) is encoded
with a length value conform to the two previous cases (l 6 127
or 16,383). A frame of 147,457 units is therefore fragmented
as follows:

11000100 65,536 units 11000100 65,536 units

11000001 16,384 units 00000001 1 unit

In unaligned variant:

• if l is the length of a bit-map, l− 1 is encoded as a normally small
whole number;

• if lmax 6 65,535, l− lmin is encoded on dlog2(lmax − lmin +1)e bits;

• if14 lmax − lmin > 65,534 or if the upper bound lmax is infinite:

– if l 6 127, l is encoded on 8 bits with the high-order bit set
to 0: 0l l l l l l l;

– if 128 6 l 6 16,383, l is encoded on 16 bits where the two high-
order bits are respectively set to 1 and 0: 10l l l l l ll l l l l l l l;

– if l > 16,384 (i.e. 16 K), the value encoding is fragmented as
explained previously for the aligned variant (without being
octet-aligned).

12The measure unit (bit, octet, character or element) is always known unambigu-
ously by both the sender and the receiver.

13Since every fragment is as big as possible, the canonical property is ensured.
14This case is slightly different from its equivalent in the aligned variant.

440 ASN.1 – Communication between Heterogeneous Systems

If a type has an extensible size constraint and if the value to be
transmitted does not conform to the extension root of this constraint,
then the length is encoded as a semi-constrained whole number (with
lmin = 0 and lmax = +∞).

20.6 Encoding of all types

20.6.1 BOOLEAN value

A BOOLEAN value is encoded on a single bit (1 for TRUE, 0 for FALSE), which
is appended to the bit-field without specifying its length or restoring the
octet alignment.

20.6.2 NULL value

The NULL value is never encoded. If it is the value of an alternative of
a CHOICE type or of an optional component of a SEQUENCE or SET type,
the bit-map appearing as the preamble of these types’ encoding always
provides enough information to know whether this value is implied.

20.6.3 INTEGER value

Let (bmin..bmax), the effective range constraint to be associated with
the type INTEGER. If, in the ASN.1 specification, the INTEGER type is fol-
lowed by at least one PER-visible constraint that is extensible, a pream-
ble consisting of one bit is appended to the bit-field (without being
octet-aligned). This bit equals 0 if the transmitted value belongs to
the constraint’s extension root (as specified in the ASN.1 module) and
1 otherwise.

Let n be the integer to send. For the aligned variant as for the un-
aligned variant, n− bmin is encoded as a constrained whole number (or
semi-constrained if bmax = +∞); if bmin = −∞, n is encoded in 2’s-
complement if it is negative (see Section 20.4 on page 435); if needed (as
explained in Section 20.5 on page 438), a length field L is inserted, en-
coded as a constrained whole number on the interval [1 ; lmax] where lmax

is the number of bits necessary to encode bmax , i.e. lmax = dlog2 bmax e.
If the value corresponds to an extension of the subtype constraint

(as specified in the ASN.1 module), the length is encoded as an un-
constrained whole number (octet-aligned in aligned variant), then the

20 - Packed Encoding Rules (PER) 441

value is encoded, in 2’s-complement if negative (octet-aligned in aligned
variant). Thus, the whole number:

v INTEGER (3..6, ..., 8..10) ::= 8

is encoded as 10000000100001000 in unaligned variant.

20.6.4 ENUMERATED value

If the ENUMERATED type is not extensible, the enumerated whole numbers
in the abstract syntax are sorted in ascending order of their values (these
numbers may have been computed by the ASN.1 compiler according to
the rule 〈12〉 on page 140); a new index is then associated with every
number, starting from 0 by one-increment. The index of the chosen
enumerated number is encoded as a constrained whole number in the
interval [0 ; indexmax] (see Section 20.4 on page 435). For example, the
value:

v ENUMERATED {green(0), orange(56), red(2476)} ::= orange

is encoded as 01 in aligned variant as well as in unaligned variant.

If the ENUMERATED type is extensible (or if the module includes the
EXTENSIBILITY IMPLIED clause in its header), a preamble of one bit is
appended to the bit-field (without being octet-aligned). If the value
appears in the root enumeration, the preamble equals 0, and the enu-
merated value is encoded as if the type were not extensible (re-indexing
only the root enumeration list). If the value corresponds to one of the
extensions, the preamble equals 1. The enumerated values appearing
in the ENUMERATED type’s extensions are then re-indexed (ignoring the
root) by associating a new number starting from 0 by one-increment
(the rule 〈10〉 on page 140 ensures that every integer associated new
extension is greater than the previous one). The extension index that
corresponds to the enumerated value to be sent is then encoded as a
normally small non-negative whole number.

20.6.5 REAL value

The encoding of a real value is the same as for the CER or DER encoding
rules (see Figure 18.5 on page 401 and Table 19.1 on page 420). The
resulting octets are appended to the bit-field (octet-aligned in aligned
variant) once encoded the number of octets in a length field L.

442 ASN.1 – Communication between Heterogeneous Systems

20.6.6 BIT STRING value

If the type is followed by an extensible PER-visible size constraint, a one-
bit preamble is appended to the bit-field (without being octet-aligned).
This bit equals 0 if the string length belongs to the constraint’s root (as
specified in the ASN.1 module), and 1 otherwise (in this case, the string
length is encoded as a semi-constrained whole number).

Let (SIZE (lmin..lmax))
15 be the effective constraint associated with

the BIT STRING type.

• If lmin = lmax 6 16 bits, the string length is not sent and the bit
string is appended to the bit-field (without being octet-aligned);

• if 17 6 lmin = lmax 6 65,536 bits, the string length is not sent
and the bit string is appended to the bit-field (it is octet-aligned
in aligned variant because it is not necessarily a whole number of
octets);

• if lmin = lmax > 65,537 bits, the length field L is encoded as a
constrained whole number according to Section 20.5, and the value
is fragmented as explained on page 439;

• if lmin 6= lmax (or if there is no effective size constraint), the
length field L is encoded as a constrained whole number (or semi-
constrained whole number when lmax = +∞) according to Sec-
tion 20.5 (if the bit string length is greater than 64 K bits, the
value is fragmented as explained on page 439).

If the BIT STRING type includes a list of named positions (in curly
brackets) in the abstract syntax, all trailing 0 bits are removed; more-
over, when the type is followed by a size constraint, trailing 0 bits are
added or removed to reach the smallest length which satisfies the size
constraint as it is described in the ASN.1 specification (this ensures the
canonical property for the canonical PER variant).

20.6.7 OCTET STRING value

The encoding of an octet string is the same as for a string of type BIT

STRING but for the unit of length field L which is the octet (in particular,
if the string is of fixed length greater than 2 octets, its encoding is octet-
aligned in aligned variant).

15lmax may equal +∞.

20 - Packed Encoding Rules (PER) 443

20.6.8 OBJECT IDENTIFIER value

The encoding of an object identifier is the same as in BER (see Sec-
tion 18.2.8 on page 404). The resulting octets are appended to the
bit-field (octet-aligned in aligned variant) once encoded the number of
octets in a length field L.

20.6.9 RELATIVE-OID value

The encoding of a relative object identifier is the same as in BER (see
Section 18.2.9 on page 405). The resulting octets are appended to the
bit-field (octet-aligned in aligned variant) once encoded the number of
octets in a length field L.

20.6.10 Character strings and dates

We first describe the case of known-multiplier character string types
(see right-hand column of Table 11.1 on page 175). If the type is con-
strained, it is associated an effective size constraint of the form (SIZE

(lmin..lmax))
16 and an effective alphabet constraint of the form (FROM

("c1"|"c2"| · · · · · · |"cn"))17. If the FROM constraint is extensible in the
ASN.1 module, the effective alphabet constraint gathers together all the
characters of the parent type.

If the SIZE constraint is extensible in the ASN.1 module, a one-bit
preamble is appended to the bit-field (without being octet-aligned). This
bit equals 0 if the string length conforms to the root of the size constraint
(as specified in the ASN.1 module) and 1 otherwise. Remember that if a
FROM constraint includes an extension marker, it is not PER-visible and
does not change the value of this extension bit.

The PER try and compress the encoding of known-multiplier char-
acter strings by relying on the effective alphabet constraint if present
(otherwise the set of all the characters allowed by the type is used). Let
n be the number of characters in the effective constraint18, b = dlog2 ne

16See footnote 15 on the preceding page.
17Note that contrary to the SIZE constraint, what matters here is the number of

characters actually used but not the interval that has the smallest lower-bound char-
acter and greatest upper-bound character according to the order relation associated
with the character string type.

18For a string of type IA5String (FROM ("A")), no character is encoded, it is in fact
the length field that provides the means of determining the number of characters of
the string.

444 ASN.1 – Communication between Heterogeneous Systems

Type vmin vmax Encoding standard
providing the order relation

NumericString 32 57 [ISO646]
(see rule 〈15〉 on page 193)

PrintableString 32 122 [ISO646]
(see rule 〈17〉 on page 194)

VisibleString 32 126 [ISO646]
ISO646String

IA5String 0 127 [ISO646]
(see Table 11.2 on page 178)

BMPString 0 216 − 1 [ISO10646-1]
(see rule 〈47〉 on page 196)

UniversalString 0 232 − 1 [ISO10646-1]
(see rule 〈46〉 on page 196)

Table 20.3: Minimal and maximal encoding values for characters of
known-multiplier character string types

and c = dlog2 be. Every character is encoded on B = 2c bits (the smallest
power of 2 immediately greater than b) to preserve the octet alignment
in aligned variant and on B = b bits (the smallest number of bits) in
unaligned variant. A whole number is associated with every character
of the list ("c1"|"c2"| · · · · · · |"cn") according to Table 20.3. Let vmin and
vmax be the smallest and the greatest of these numbers respectively.

If vmax 6 2B − 1, (i.e. if all the characters of the list
("c1"|"c2"| · · · · · · |"cn") are encoded on B bits), every character of
the string is encoded as its associated whole number in the interval
(vmin..vmax). This avoids re-indexing the characters, which is computa-
tionally expensive. Otherwise, the character list ("c1"|"c2"| · · · · · · |"cn")
is re-indexed according to the canonical order defined in the standards
[ISO646] or [ISO10646-1] starting from 0 by one-increment. This consti-
tutes the new index, encoded on B bits for every character to be sent.
The binary string length is therefore a multiple of B bits in both cases.

If the character string length is fixed (lmin = lmax) and smaller than
64 K, the length field L is not inserted and the resulting bit-field is
octet-aligned (in the aligned variant) only if B × lmax > 17.

If the character string length is not fixed or if it is greater than
or equal to 64 K, the length (in characters) of the string is encoded
according to Section 20.5, and appended to the bit-field before encoding
the string (it is octet-aligned only if B×lmax > 17 in the aligned variant).

20 - Packed Encoding Rules (PER) 445

For example, the string:

v IA5String (FROM ("ACGT")^SIZE (3)) ::= "TAG"

is encoded in 11 00 10. However, the string:

v IA5String ::= "TAG"

is encoded in the unaligned variant as:

L

00000011

"T" on 7 bits

1010100

"A"

1000001

"G"

1000111

and in aligned variant as:

L

00000011

"T" on 23 bits

01010100

"A"

01000001

"G"

01000111

Dates of GeneralizedTime and UTCTime types (though special cases of
the known-multiplier character string type VisibleString) are encoded
according to BER for the basic PER variant and according to DER for
the canonical PER variant (see Table 19.2 on page 421).

Finally, for the character string types that do not belong to the
‘known-multiplier’ category (including the type ObjectDescriptor), no
constraint is PER-visible even when one of them is extensible (as a
result, the extensibility bit will always be absent). The character string
is encoded in BER (see on page 406) in case of basic PER and in DER
(see Table 19.1 on page 420) in case of canonical PER. A length field L
(measured in octets) is inserted beforehand as an unconstrained whole
number.

20.6.11 Open type value

An open-type value is actually a value of any ASN.1 type that is known
by both the sender and the receiver. This value is therefore encoded
according to its effective type with no indication of the type in the
encoding of the open-type value. In general, the actual type of the value
is referenced by an object identifier that has been sent before. Thanks
to an association table (an information object set), the decoder finds the
type of the value and can decode the rest of the bit stream according to
the corresponding rules. This concept of identification was presented in
the chapter on BER on page 412.

The bit-field obtained is completed with padding 0 bits to obtain a
whole number of octets (as if it were a PDV). This number of octets

446 ASN.1 – Communication between Heterogeneous Systems

is first encoded as an unconstrained whole number in the L field and
appended to the bit-field (octet-aligned in the aligned variant).

Some of the secure data transfer protocols make a quite sensible
use of this systematic length field and specify a type constraint (see
production TypeConstraint on page 352) of the form:

TYPE-IDENTIFIER.&Type (ActualType)

Even if, from the abstract syntax viewpoint, the values should be nec-
essarily of type ActualType, the presence of the length field makes it
possible to draw out the series of octets that correspond to the encoding
of the open-type value to hand over the bit-field ‘as is’ to the receiving
application which can apply an algorithm to check the data integrity.

For ASN.1:1990 specifications, a value of type ANY is encoded as an
open-type value.

20.6.12 SEQUENCE value

First, the COMPONENTS OF clauses, if present, are developed with respect
to rule 〈19〉 on page 224. If the SEQUENCE type is extensible (or if the
module includes the EXTENSIBILITY IMPLIED clause in the header), a one-
bit preamble is appended to the bit-field (without being octet-aligned).
This bit equals 1 if the value includes components that belong to the
type’s extensions; it equals 0 otherwise.

If the type’s extension root (in two parts if two extension markers are
present) includes n components marked OPTIONAL or DEFAULT, a second
preamble of n bits is appended (if n > 64 K, this bit-map is fragmented
as explained on page 439); it is preceded by its length encoded as a whole
number constrained by lmin = lmax = n as explained in Section 20.5.
Every bit equals 1 if the component appears in the value, 0 otherwise
(the components are considered in the order they appear in the type
definition).

In canonical PER, a component is never encoded if it has the DEFAULT

value. In basic PER, a constructed-type component (SEQUENCE, SET,
SEQUENCE OF, SET OF, CHOICE) may be encoded (or not) depending on the
sender’s requirements even if it has the default value; it is never encoded
if it is of a basic type19 (these basic types are those defined in Chapters
10 and 11)

19This rule has the advantage of providing a more compact encoding for basic types
while avoiding an expensive matching test for more complex types (in practice the
default values of complex types are hardly ever used).

20 - Packed Encoding Rules (PER) 447

After these possible preambles, every component of the extension
root is encoded according to the rules associated with its own type in
the order they appear in the SEQUENCE type definition.

If the type is extensible and if it features p extensions20, p − 1 is
encoded as a normally small whole number (each group of components
nested in version double square brackets accounts for a single extension).
A bit-map21 of p bits is then added (fragmented if p > 64 K). Each bit
equals 1 if the corresponding extension is present in the value (whether
this extension is mandatory or marked OPTIONAL or DEFAULT), 0 otherwise.
Then each extension is encoded as an open type value of the appropriate
type22 (see Section 20.6.11).

An extension group in double square brackets is encoded as a
SEQUENCE type value that would collect all the components of this group
(a bit-map is appended in preamble if this group encloses components
marked OPTIONAL or DEFAULT; if all components are absent, the extension
is considered ‘absent’ in the value).

Note that no length field is encoded for a value of type SEQUENCE:
the bit-map of the optional root components and the bit-map of the
extensions enables the decoder to infer the components that are actually
present in this value. Of course, a length field may obviously appear in
the encoding of some components of the SEQUENCE value.

20.6.13 SET value

The components of the extension root (in two parts if two extension
markers are present) of the SET type are sorted according to the canonical
order23 defined by rule 〈15〉 on page 228. If a component is an untagged
CHOICE, it should adopt the tag of its first alternative (in the textual
order) for ordering’s sake. If the SET type includes extensions, their
textual order is retained.

20If the protocol corresponds to a specific version of the specification, it is recom-
mended to encode the number p of extensions of this version rather than the overall
number of extensions the type has in the specification.

21This bit-map must not be truncated if it ends with zeros because the sender’s
protocol may happen to be of an older version.

22The extension components must be encoded as open-type values so that a receiver
that uses an older version of the ASN.1 specification could ignore this value (or re-
send it as an octet string for a relay between two systems): in that case, it knows the
number of octets to be discarded.

23This canonical order was preferred to the textual order of the components in
the specification to prevent interworking problems when operating some ‘editorial
changes’ between two versions of a protocol.

448 ASN.1 – Communication between Heterogeneous Systems

The SET type thus ordered is then considered as a SEQUENCE type to
be encoded according to the rules of the previous section.

20.6.14 SEQUENCE OF value

When the size constraint, if present, applied to the SEQUENCE OF type
is extensible, a one-bit preamble is appended to the bit-field (without
being octet-aligned). This bit equals 0 if the number of elements in
the list belongs to the root of the constraint (as specified in the ASN.1
module) and 1 otherwise. A length field L is then encoded to indicate the
number of elements of the list if this is not determined by the effective
constraint (lmin 6= lmax or the length does not belong to the constraint’s
root as specified in the ASN.1 module).

Finally every element is encoded in order (octet-aligned in aligned
variant) according to the rules associated with the element’s type.

20.6.15 SET OF value

The elements of a set are encoded as those of a SEQUENCE OF type without
changing the ordering for the basic variant, and once the PER encodings
of each element have been sorted in ascending order for the canonical
variant (see Table 19.2 on page 421).

20.6.16 CHOICE value

If the CHOICE type is extensible (or if the module includes the
EXTENSIBILITY IMPLIED clause in the header), a one bit-preamble is ap-
pended to the bit-field (without being octet-aligned). This bit equals 1

if the retained alternative is one of the extensions and 0 otherwise. The
root’s alternatives are sorted according to the canonical order defined
in rule 〈15〉 on page 228 (see also note 23 on the preceding page) before
associating them with an index starting at 0 by one-increment.

If the CHOICE type is not extensible or if it is extensible but it is one of
the root’s alternatives retained, the index of this alternative is encoded
as a value of type INTEGER (see Section 20.6.3 on page 440). If the CHOICE

type includes a single alternative, the index is not encoded. The value
of the alternative retained is encoded according to the rules associated
with its type.

Another index is associated with each one of the alternatives in the
extensions. It is determined by the canonical order of rule 〈15〉 on page

20 - Packed Encoding Rules (PER) 449

228, starting from 0 by one-increment. The index of the alternative is
encoded as a normally small whole number after the one-bit preamble,
which equals 1. The version double square brackets do not impact the
way this index is computed, nor the value’s encoding. The value of the
alternative retained is then encoded as an open-type value (see Section
20.6.11).

Contrary to the BER encoding rules, when the PER are used it is
impossible to replace a CHOICE type in the ASN.1 module by one of
its alternatives or to replace a type by a CHOICE for which one of the
alternatives is this very type.

20.6.17 Tagged type value

As tags are not implicitly supported by the PER, a value of a tagged
type is encoded according to the encoding rules that apply to this type.
The restrictions on distinct tags must be respected in the ASN.1 module
(they are used for instance to order the components of a SET type or the
alternatives of a CHOICE type); it is therefore recommended to insert the
clause AUTOMATIC TAGS in the module header not to be concerned about
these restrictions.

20.6.18 EXTERNAL value

For EXTERNAL values, the encoding rules of the value field V in
PER are the same as in BER (see on page 410 and Table 18.2 on
page 410). The length of the value field V (in octets for the alterna-
tives single-ASN1-type and octet-aligned, and in bits for the alterna-
tive arbitrary) is encoded beforehand in a length field L according to
the rules of Section 20.5 on page 438.

20.6.19 INSTANCE OF value

A value of type INSTANCE OF is encoded according to the associated
SEQUENCE type defined by rule 〈4〉 on page 358.

20.6.20 EMBEDDED PDV or CHARACTER STRING values

If the EMBEDDED PDV or CHARACTER STRING type is followed by a WITH

COMPONENTS constraint that restricts the alternative syntaxes to a se-
quence of two pre-determined object identifiers (which involves that

450 ASN.1 – Communication between Heterogeneous Systems

the abstract and transfer syntaxes are known by both the sender and
the receiver) or restricts the component identification to the alter-
native fixed24 (according to the associated SEQUENCE type defined on
Figure 14.3 on page 305), then the embedded value is encoded in PER
as a value of type OCTET STRING.

If the identification component is not constrained in any of the two
ways presented above, the complete value is encoded as if it conformed
to the associated SEQUENCE type defined on Figure 14.3 on page 305 (in
particular, a bit-map of the optional components appears in preamble).

20.6.21 Value set

To encode a value whose type is defined with a value set (production
ValueSetTypeAssignment on page 110), the type of the set is considered
as constrained by the value set itself, according to rule 〈11〉 on page 333.
A value of the set:

Set1 INTEGER (1..20) ::= {1 | 5 | 7}
is encoded according to the type:

Set1 ::= INTEGER (1..20)(1 | 5 | 7)

and consequently with the effective constraint (1..7). In particular,
the type associated with the value set:

Set2 INTEGER (1..20, ...) ::= {1 | 5 | 7}
is not extensible from the PER viewpoint according to rule 〈7〉 on
page 259.

20.6.22 Information objects and information object sets

Information objects and information object sets are never encoded. To
transmit the information they contain, the relevant pieces are extracted
as explained in Section 15.6 on page 336. This information is used in
other ASN.1 values and encoded according to the rules associated with
these values.

24In both cases (among others) the complete encoding can be relayed since the
value of type EMBEDDED PDV or CHARACTER STRING (but also EXTERNAL type) does not
carry the presentation context identifier. The canonical property, however, is obtained
only if the embedded value is in turn encoded according to canonical encoding rules
[ISO8825-2, clause 7.6].

20 - Packed Encoding Rules (PER) 451

20.7 A complete example

By way of conclusion for this chapter, we take again the example of
Section 18.4 on page 415, so that the BER and PER encodings of the
same value can be compared.

The aligned PER encoding of the value v is 15 octets long. A vertical
bar “|” indicates the octets’ boundaries and the letter “x” highlights
the 0 bits inserted to restore the octet alignment (padding-bits).

0 extensible type GetRequest, no extension
10 TRUE, FALSE

10 bit-map for AcceptTypes

110|0xxxxxxx| bit string standards

0 0001100| length of the url component
01110111| "w"

01110111| "w"

... encoding of each character on 23 bits
(the PDV has a whole number of octets)

The unaligned PER encoding of the value v has 13 octets (compared
to 27 octets for BER):
0 extensible type GetRequest, no extension
10 TRUE, FALSE

10 bit-map for AcceptTypes

110|0 bit string standards

0000110|0 length of the url component
1110111| "w" (on 7 bits)
1110111 "w"

1|110111 "w"

01|01110 "."

110|0001 "a"

1110|011 "s"

11011|10 "n"

011000|1 "1"

0101110| "."

1100011 "c"

1|101111 "o"

11|01101xxx "m" (and padding to obtain the PDV)

For the type Url, the FROM constraint restrains the alphabet of the
known-multiplier character string type VisibleString to 69 characters.

452 ASN.1 – Communication between Heterogeneous Systems

The smallest power of two that equals or is immediately greater than
69 is 27 since we have 26 < 69 6 27, so that in unaligned variant, every
character of the URL is encoded on 7 bits. The smallest power of two
that is immediately greater than 7 is 8 since 22 < 7 6 23, in order that
in the aligned variant, each character of the URL is encoded on 8 bits.
The code of each character can be found in Table 11.2 on page 178.
There is no re-indexing of the characters since all the character codes
listed in the FROM constraint are smaller than 27.

The PER encoding and decoding of this value in the aligned and
unaligned variants are simulated in Appendix A on page 499 (may we
recommend you to also have a look at the output generated by the
ossPrintPer() function and reproduced on page 503).

Chapter 21

Other encoding rules

Contents

21.1 Light Weight Encoding Rules (LWER) 454

21.2 BACnet encoding rules 455

21.3 Octet Encoding Rules (OER) 456

21.4 Signalling specific Encoding Rules (SER) 457

21.5 XML Encoding Rules (XER) 458

21.6 Encoding control . 459

What would a universal society be if this
had no particular country, if it were neither
French, nor English, nor German, nor Spanish
[...] or even if it were all of these at once?
[...] And what would be its language? With
this fusion of societies, would a universal
idiom emerge or would there be a business
dialect for daily use while every nation would
keep their own language? Or else would
various languages be understood by everyone?

François-René de Chateaubriand.

This short chapter presents some non-standard encoding rules (at an
international level at least) but is not meant to be exhaustive. Anyone

454 ASN.1 – Communication between Heterogeneous Systems

can define one’s own set of encoding rules1. Indeed, it is one of ASN.1
advantages compared to other abstract syntax notations: once written
the abstract syntax, the encoding may be changed without adapting the
abstract syntax (and all the more so when using an ASN.1 compiler since
the appropriate option needs only to be given on the command line).

However, a plethora of transfer syntaxes could lead to new inter-
working difficulties that ASN.1 lays claim to solve. Indeed, if several
encoding rules are actually standardized (or designed by some commu-
nity of users), ASN.1 compiler vendors will only implement a few of
them (if not only the BER as it is often the case today) for development
cost reasons.

The ideal is therefore to standardize only a few encoding rules, every
one of which have their own specific properties concerning data com-
pression, encoding speed, canonical properties... If a user has a compiler
that supports those different sets, the adequate transfer syntax should
be determined in accordance with the demands of the protocol it applies
to.

21.1 Light Weight Encoding Rules (LWER)

Studies on Light Weight Encoding Rules (LWER) started in Germany
around 1985 and went on in France from 1988 on at INRIA (called ‘Flat
Tree Light Weight Syntax’ or FTLWS at the time) [Hui90] [DHV92]2.

The purpose was to offer an alternative to the BER (the only en-
coding rules available at the time) to transfer data in a faster and more
efficient way between two machines of similar architecture. The LWER
were meant to support 8, 16 or 32-bit memory-words as well as ‘little
Endian’ or ‘big Endian’ architectures (see Figure 2.1 on page 9) since
permuting the octet ordering when encoding or decoding proves costly
in terms of processing time. The LWER had therefore at least six dif-
ferent variants but had to be standardized to prevent an increase in the
number of these variants required to meet the specific demands of a
manufacturer that wanted to adapt it to their own architectures.

Although the LWER optimized the processing time for encoding and
decoding routines, the data compression was no real issue (for the 32-bit

1Should the negotiation mechanism presented in Figure 3.2 on page 22 require
it, an object identifier is associated with the set of encoding rules according to the
procedure described in [ISO8823-1, annex B] (see also Section 10.8 on page 153).

2The results of INRIA also lead to the High Speed Coding Rules, HSCR [BS92].

21 - Other encoding rules 455

alignment in particular, the number of octets generated by the LWER
was greater than the BER). For this, all useless information was re-
moved (contrary to the BER); the tags were encoded only to denote one
of the alternatives of a CHOICE type, the lengths did appear but only
before strings (bit strings, octet strings and character strings) or lists
(SEQUENCE OF, SET OF) and were systematically encoded in definite form
(see Figure 18.3 on page 396). All the values of fixed length were encoded
at the beginning of the bit-field and a pointer (actually the number of
octets to be shifted from) indicated the starting-point of every encoding
of variable length.

The encoding routines were 1.6 to 5.8 times faster than the BER
[DHV92], but the gain depended as much on the implementation tech-
niques allowed by the LWER than on optimizations operated within the
ASN.1 specifications (subtype constraints for example).

Besides, in 1985 it became clear that PER encoding and decoding
routines (see Chapter 20) were much faster than expected (the PER
were not originally designed for this purpose). That was the coup de
grâce for the LWER, which were eventually given up in 1997. One of
the possibilities for obtaining a significant gain compared to the PER
would have been to transmit a memory core dump but this would not
have been canonical (remember the canonical property is necessary to
compute a digital signature, see Chapter 19), nor secured (the risk of
transferring a protected area of memory should be considered).

21.2 BACnet encoding rules

The BACnet encoding rules3 (Building Automation and Control net-
works, [Ash95]) were designed by the American Society of Heating,
Refrigerating and Air-conditioning Engineers (ASHRAE4), an interna-
tional organization of 50,000 people, and the National Electrical Manu-
facturers Association (NEMA). They are used to transfer on the Inter-
net data collected from control devices for monitoring of central heating,
ventilation, air-conditioning or smoke detectors for buildings located in
different places.

The description of a transfer syntax that is relevant to the BACnet
encoding rules will benefit from the ‘encoding control’, which is being

3http://www.bacnet.org, ftp://ftp.bacnet.org/Encoding.doc
4http://www.ashrae.org/

http://www.bacnet.org
ftp://ftp.bacnet.org/Encoding.doc
http://www.ashrae.org/

456 ASN.1 – Communication between Heterogeneous Systems

defined by the ASN.1 working group (see Section 21.6). This would
make it possible to use a generic tool for generating the encoding and
decoding procedures.

21.3 Octet Encoding Rules (OER)

In 1995, when working on National Transportation Communications for
Intelligent Transportation Systems Protocol (NTCIP) and Simple Trans-
portation Management Protocol (STMP), the National Electrical Man-
ufacturers Association (NEMA) learned about ASN.1 and its associated
encoding rules, the BER. Ignoring the existence of the PER, they had
in mind to develop a protocol that would need a small bandwidth so
they developed rules specific to the STMP protocol called NEMA PER.
These NEMA PER, however, could do with a few refinements since some
mistakes still remain (some encoded values cannot be decoded, all the
types of the ASN.1 standard are not supported...).

Adapted from the NEMA PER, the Octet Encoding Rules (OER5)
are meant to be less expensive than the BER, and easier to understand
and to implement, than the standardized PER. The general form of the
transfer syntax is a triplet [T][L][V] 〈optional tag field, optional length
field, optional value field〉, which is indeed half-way compromise between
the BER TLV and the PER [P][L][V] formats.

The OER use the abstract syntax to generate a quite efficient encod-
ing but support only the most simple subtype constraints, i.e. the (non-
extensible) SIZE constraint applied on the BIT STRING, OCTET STRING and
known-multiplier character string types and the (non extensible) value
range constraint for the INTEGER type, which enables the encoder to send
an integer on 1, 2 or 4 octets without indicating the length field L. The
tag field T is very often reduced to a single octet because the tags are
encoded as if they were in explicit mode (except for the CHOICE type).
There is no canonical ordering for a SET or CHOICE type, which reduces
the computing time necessary for encoding.

The OER are not expected to be standardized because they are not
mature enough and not prototyped (the current document still contains
mistakes). We can imagine, however, that a new ‘fully-aligned’ variant of
the PER (see also encoding control exposed in Section 21.6 on page 459)
or a new clause ALIGNED (which would appear just before a type, like the

5http://www.viggen.com/ntcip/documents/oer.rtf

http://www.viggen.com/ntcip/documents/oer.rtf

21 - Other encoding rules 457

EXPLICIT or IMPLICIT keyword) could take into account some principles
introduced by the OER.

It seems, however, that by slightly changing the ASN.1 specifications
of the NTCIP protocol, the encoding would conform to the standard-
ized PER without affecting the applications already in use; the new
users may then take advantage of commercial ASN.1 compilers already
available. Besides, the ISO TC 2046 technical committee, in charge of
the NTCIP protocol in particular, announced that the use of PER would
be encouraged for the protocols under their responsibility.

21.4 Signalling specific Encoding Rules (SER)

The Signalling specific Encoding Rules (SER) were jointly introduced by
France Télécom R&D, and Nokia [Cha92] [Cha97b]. Their main purpose
is to generate automatically, using an appropriate compiler, encoding
and decoding functions from an ASN.1 description, for protocols that
were not originally written in this notation. The protocols in question
are mainly found in the signalling domain: the signalling system No. 7 of
the Integrated Services Digital Network (ISDN), GSM access protocols...

The advantage is straightforward: the protocol designer (who is more
often used to the low layers of the OSI model) now has, without going
to great expenses, a high-level specification language and may use the
tools that go along with it (and test-tools, in particular, since protocol
testing is generally a long and tedious process for telecommunication
operators, see Section 23.2 on page 480).

The idea is to define (by reverse-engineering) the messages and pa-
rameters of the protocols involved so that the binary encoding expected
by the original specification can be found by applying the SER on the
associated ASN.1 specification. These rules can support the majority
of the signalling protocols and in particular those where the encoding is
based on a simplified version of the TLV triplet of the BER, and may
use pointers similar to those of LWER exposed in Section 21.1.

The SER encoding of a value is therefore the sequence of octets
obtained when applying transformation rules (to support information
generally ignored by the BER: size constraint, systematic transmission
of components marked DEFAULT...) and restricting the BER encoding op-
tions (primitive form and short definite length whenever it is possible...).

6http://www.iso.ch/memf/TC204.html

http://www.iso.ch/memf/TC204.html

458 ASN.1 – Communication between Heterogeneous Systems

The Minimum Bit Encoding Rules (MBER) were proposed in the
middle of the 80s and had the same goal: to provide an ASN.1 spec-
ification which, when encoded, produces the same (minimal) series of
bits as those described in the reference document that describes a pro-
tocol. The MBER were never standardized but were considered while
conceiving the SER and also for the first studies on the PER.

21.5 XML Encoding Rules (XER)

A set of encoding rules, called XER, which translate into XML7 (eXten-
sible Markup Language) the values described in ASN.1 is being designed
on a dedicated electronic mailing list8. On Eliot Christian’s initiative
of the U.S. Geological Survey, who is working on a global information
system, these rules are a priori dedicated to WAIS information database
(protocol Z39.50, see on page 87) but could be involved in a broader
usage.

The idea is to delimit the ASN.1 values with XML markups of the
form <MARK>...</MARK>, which means that a value of type:

PDU ::= SEQUENCE { component1 SEQUENCE OF T,

component2 U }
could be encoded as:

<COMPONENT1>...</COMPONENT1>
<COMPONENT1>...</COMPONENT1>
<COMPONENT1>...</COMPONENT1>
<COMPONENT2>...</COMPONENT2>
<COMPONENT2>...</COMPONENT2>

These new rules were examined by the ASN.1 working group dur-
ing their June 1999 meeting in Geneva. It was decided that the group
would follow their development. But the new concept of XML Schemas
[W3C00], it it gets eventually officialized by the World Wide Web Con-
sortium would provide a means9 of translating ASN.1 into XML and
reverse that would be more powerful than the current low-level typing
mechanism provided by DTD (Document Type Definition).

7http://www.w3.org/XML/
8http://asf.gils.net/xer/
9This means is still not as powerful as ASN.1 because it will remain difficult to

translate into XML semantic links modeled by ASN.1 information object class which
are frequently used in important protocols like the X.500 directory for instance.

http://www.w3.org/XML/
http://asf.gils.net/xer/

21 - Other encoding rules 459

The main interest of the ASN.1 working group on this point is to
provide a user-friendly and inexpensive way of visualizing ASN.1 docu-
ments with a web browser and investigate the opportunity of encoding
XML pages in PER to provide a more compact encoding than the default
encoding used on the web.

It should be noted that the Wireless Application Protocol (WAP)
forum developed a compact binary representation of XML called Binary
XML10 intended to reduce the transmission size of XML documents for
more effective uses of such data on narrowband communication channels.
One may wonder if it would have not been better to write a special ASN.1
module for handling XML documents and then encode them in PER to
benefit from their numerous advantages instead of creating a new set of
encoding rules which is less compact than the PER.

21.6 Encoding control

Presented during the January 1999 ASN.1 meeting in Lannion, the en-
coding control notation (ECN) will allow specifiers to define their own
encoding rules by referencing standardized encoding rules and modi-
fying some of their characteristics (for example, one may want to use
the whole standardized PER set but for the boolean values that would
remain encoded on octets), or even to set up completely new ones.

Encoding control [Wil99] will prove useful in application domains
that require a particularly optimized transfer syntax (in terms of size or
speed of encoding/decoding): the ISDN User Part of CCITT Signalling
System No. 7 (ISUP) or Signalling Connection Control Part (SCCP)
recommendations, but also some standards for intelligent transportation
systems management or radio interface (the 3GPP11 project of third-
generation mobile phones based on the UMTS standard for example).
All these standards describe data transfer as bit- or octet-fields in tables
or (English) texts without providing an ASN.1 abstract syntax (except
for UMTS that is based on big ASN.1 specifications).

A more systematic use of ASN.1 in the context of these protocols will
make them more likely to be used in generic test-tools like those based
on TTCN (Tree and Tabular Combined Notation) for example, and
will prevent a plethora of informal encoding rules (unfit for validation),

10http://www1.wapforum.org/tech/terms.asp?doc=PROP-WBXML-19990815.pdf
11Third Generation Partnership Project, http://www.3gpp.org/

http://www1.wapforum.org/tech/terms.asp?doc=PROP-WBXML-19990815.pdf
http://www.3gpp.org/

460 ASN.1 – Communication between Heterogeneous Systems

generally non-standardized, which may become the exclusive property
of a single tool vendor.

ASN.1 can describe abstract syntaxes, but for the time being there
exists no formal notation that could define encoding rules12. The en-
coding control will probably be modelled by a new category of modules
called ENCODING-CONTROL; it will contain the information about the align-
ment, the padding bits, the computation of length field etc. that defines
the encoding to be associated with (some of) the generic ASN.1 standard
types or specific types imported from another ASN.1 module.

In addition, a linkage module, called LINK-DEFINITIONS, which is in
principle very much similar to a makefile for Unix systems, will asso-
ciate one or several modules with one or several encoding control mod-
ules (or with standardized encoding rules, like the PER aligned variant
for example, together with an encoding control module in which some
of these standardized rules are modified).

The encoding control standard (which may be called X.692) should
be approved in March 2001. All the material defined in this section
is currently being defined by the ASN.1 working group. Some of the
characteristics described above are therefore liable to change until the
final document is approved.

12Some notations that describe transfer syntaxes, like CSN.113, do exist but these
can only define the concepts related to encoding without going further into the detail
of the series of the bits that is represented by this new notation.

Part IV

ASN.1 Applications

Chapter 22

Tools

Contents

22.1 What is an ASN.1 compiler? 463

22.2 Notes on compiler usage 467

22.3 Parsing ASN.1: a troublesome problem 469

22.4 Other tools . 470

And the woodcutters who lost their tools,
Crying out loud to have them back.

Jean de La Fontaine, Fables.

Without the appropriate software tools, there would not be much point
in using a formal notation like ASN.1. We now come to some of the
tools associated with ASN.1. When protocol implementation is being
considered, the tool par excellence is the compiler. From a set of mod-
ules, it generates automatically the encoding and decoding procedures
for the various types defined in the specification. This chapter does not
focus on any ASN.1 compiler in particular.

22.1 What is an ASN.1 compiler?

Generally speaking, a compiler is a computing tool that reads a program
written in a first language, called ‘source language’, to translate it into
a second language called ‘target language’ (this language is closer to

464 ASN.1 – Communication between Heterogeneous Systems

input files

lexical analysis

parsing

error handling

semantic analysis

target language code generation

output files

Figure 22.1: Four usual stages of a compilation process

the machine architecture; it is often assembler or some machine-oriented
language). In our case, the source language is ASN.1, the target language
is generally C, C++ or Java, and the ‘program’ is a specification made
of several modules linked by IMPORTS clauses. In this respect, an ASN.1
compiler would better be considered as a stub compiler.

The progress of a communicating application designer, who goes from
the ASN.1 specification to the executable file that can send and receive
data is shown in Figure 22.2 on the next page. We have already breached
the subject in Section 4.7 on page 40.

We first have to collect all the files that constitute the ASN.1 speci-
fication, including those (transitively) referenced in the IMPORTS clauses.
Compiler vendors very often have the most common standards and may
help you to carry out this task as long as they do not infringe the copy-
right legislation that may apply to these standards. All these files (whose
extension is generally “.asn” or “.asn1”), each of which contain one or
several ASN.1 modules, are given to the compiler as input files.

22 - Tools 465

ASN.1 specification
(abstract syntax)

spec1.asn spec2.asn spec3.asn

ASN.1 Compiler

ASN.1 C
(see Figure 22.1 on page 464)

library for encoding &
decoding ASN.1 primitive types
(provided with the compiler)

asn.h asn.c

‘.h’ = concrete syntax
‘.c’ = transfer syntax
(encoding and decoding
procedures for each type
defined in the specification)

spec.h spec.c

‘.h’ and ‘.c’ files
of the communicating application

(behavior of the protocol)

appli.h appli.c

C language
compiler

communicating application executable file values
to be sent

network or
telephone line

octets or bits

BER/CER/DER/PER

Figure 22.2: Modus operandi of an ASN.1 (to C) compiler

466 ASN.1 – Communication between Heterogeneous Systems

In an ideal world1 of Figure 22.1 on page 464, a compiler breaks down
into four layers [ASU86] and each layer can start only if the previous one
reported no error: in particular, the semantic analysis is executed only
if the files include no lexical or syntactic errors (also called grammatical
errors), and the output files are generated if there is no semantic error
in the specification.

Parsing and lexical errors are induced by symbols that are not al-
lowed in the ASN.1 grammar (e.g. the underscore “ ”) or by gram-
matical structures that are not permitted by the structural rules of the
notation (e.g. a comma before a closing curly bracket) while semantic
errors denote incoherence in the specification (e.g. allocating an integer
to a value declared as BOOLEAN).

If the specification includes no syntactic errors and if it is semanti-
cally correct, the compiler usually generates:

• a file with the concrete syntax, which is the translation of the data
types defined in the ASN.1 specification into the target language
(for the most common, the C language, this file, called ‘header
file’, has the extension ‘.h’);

• one or several files including one encoding procedure and one de-
coding procedure for each type of the ASN.1 specification; these
implement the encoding rules retained (BER, CER, DER, PER...)
into the target language and generate the transfer syntax (for the
C language, these files have the extension ‘.c’).

Without further effort, the designers of a communicating application
have data transfer procedures at their disposal. What remains to be
done is to program the complete behavior of the protocol (for example,
tests or actions such as “if the application receives data of type T, then
it should return an answer of type U”) or generate it automatically from
an SDL specification as we will see in Section 23.1 on page 476.

The files generated by the ASN.1 compiler and those specific to the
communicating application are then given to a compiler of the com-
puting language used for programming the communicating application

1This ideal should normally be a common feature of all ASN.1 compilers. The
outputs of a compiler that complies this decomposition into four distinct layers are
more easily read and properly analyzed by the user, who can correct the specification
more quickly. Indeed, syntactic errors frequently induce semantic errors and compilers
that carry out a semantic analysis of a syntactically incorrect specification tend to
come up with useless error messages.

22 - Tools 467

(generally a C compiler). This produces an executable file suitable for
the machine architecture (which means that it manages correctly the
memory alignment, the bit weights...) using libraries provided with the
ASN.1 compiler, which contain the encoding and decoding procedures
of all ASN.1 primitive types. This executable can send and receive a
binary stream on a telephone line or a computer network.

22.2 Notes on compiler usage

The semantic model of ASN.1 standardized in June 1999 (see Section 9.4
on page 121) will prove useful especially for designers of compilers or any
other tools since it precisely defines whether two types are compatible,
i.e. if a value of one of these types may be used in an expression governed
by another.

The encoding and decoding procedures generated by the ASN.1
compiler depend on the tool for a great deal and there would
be no point in merely reproducing here an extract for one of
them in particular. The interested reader may refer to the URL
http://www.oss.com/products/application.html to consult a simple but
self-contained example of data encoding and decoding.

The designer may locally refine or guide the compiler’s behavior by
means of compiling directives (to force some length fields to be encoded
in defined format when BER are used, to allocate statically or dynam-
ically a list in memory, etc.). In fact these directives are comments
(sometimes called ‘formal comments’) beginning with a specific series of
symbols depending on the tool, like “--*”, “--$” or “--< >--”.

Several compilers from ASN.1 to C/C++ (and many other computing
languages) can be found on the market and they will not be detailed
here. Nevertheless when buying a compiler, it seems important that the
potential user consider the following points:

• what are the edition(s) of the ASN.1 standards (1990, 1994, 1997)
supported? Does it (really) cover the whole standard(s) in ques-
tion? Does the compiler impose any restrictions on the standard
syntax? (Inserting a semicolon after every definition for example.)

• Is the compiler reliable for checking the semantic consistency of
a specification? (A semantic error may induce interworking prob-
lems between applications and even the standardized ASN.1 mod-
ules are unfortunately far from perfect in this department.) Is this
semantic analysis exhaustive?

http://www.oss.com/products/application.html

468 ASN.1 – Communication between Heterogeneous Systems

• What are the encoding rules (BER, CER, DER, PER) furnished
by the libraries? Do the BER decoders support all encoding op-
tions? (Different length formats, primitive or constructed vari-
ant...) Should the project require it, is it easy to switch to another
set of encoding rules while keeping the same interface from the
communicating-application viewpoint? (Same parameters for in-
voking the generated procedures, same returned values...)

• Should the project require it, are the encoders and decoders opti-
mized in terms of runnning time? in terms of memory-space?

• Can we insert encoding directives by means of special comments
in the ASN.1 modules to restrict the degrees of freedom offered
by the BER or change the memory allocation routines? (Encode a
particular type in definite form length, store an integer on 4 octets,
represent the strings by arrays...)

• Can the compiler automatically generate compliance test proce-
dures to check if the data sent or received respect the subtype
constraints of the ASN.1 specification? (Even if the BER encoding
does not use these constraints, it may spare the designer consider-
able time not to have to code the tests by hand if these appear in
the formal specification)

• Is a maintenance and technical support available on a real-time
basis?

• Will the interface that gives access to the encoding and decoding
procedures be kept in the new versions of the compiler? Does
the compiler generate an interface that conforms to that of the
TeleManagement Forum and X/Open consortium [TMF96]?

Beside the usual C or C++ code generation, other (sometimes odd)
languages may be encountered such as Pascal, COBOL, Chill 2 (CCITT
HIgh Level Language)... But for many designers, the most fashionable
language, after C and C++, is now Java3. The most popular of its appli-
cations are X.509 authentication and the H.225 and MHEG standards
for multimedia data transfer (see Section 7.4 on page 84).

2http://www.kvatro.no/telecom/chipsy/
3See, for example, OSS Nokalva’s BER, DER and PER Java com-

piler at http://www.oss.com/products/products.html. Some BER libraries (un-
fortunately for ASN.1:1990) are also available in the public domain (see
http://asn1.elibel.tm.fr/en/links/#java).

http://www.kvatro.no/telecom/chipsy/
http://www.oss.com/products/products.html
http://asn1.elibel.tm.fr/en/links/#java
http://asn1.elibel.tm.fr/en/links/#java

22 - Tools 469

22.3 Parsing ASN.1: a troublesome problem

Before introducing some original tools, we need to discuss the common
front-end part of all these tools, which constitutes a real programming
challenge in the case of ASN.1: parsing (see Figure 22.1 on page 464). A
lexical and syntactic analysis takes an input file (which includes ASN.1
modules) as a character stream and generates an abstract syntax tree,
which is a memory-resident structured representation of the modules.
The execution of the parser points out all the structural mistakes that
can be found in the specification. If a specification is syntactically cor-
rect, it is represented as a tree-like structure on which a compiler can
apply several data processings (a semantic analysis, in particular).

Unfortunately, the grammar of the ASN.1 notation has a structure
(use of curly brackets for different concepts, no semicolon at the end of
a definition...) which inherently proves quite complicated to deal with
when it comes to programming ASN.1 parsers. It can hardly be blamed
for it: remember the notation was originally meant to be a means of
communication between a standardization committee and application
designers. These days are far gone now since encoders and decoders are
directly derived from ASN.1 specifications.

If the raw grammar4 of the ASN.1:1997 standard is analyzed with
Yacc (Yet Another Compiler Compiler), the most famous bottom-to-top
parser generator (called LALR(1)), it issues 396 shift/reduce conflicts
and 1,304 reduce/reduce conflicts. ANTLR (ANother Tool for Lan-
guage Recognition)5, a top-to-bottom parser generator (called LL(k)),
indicates more than 200 grammar productions beginning with the same
lexical token (an opening curly bracket for example!).

The only way to obtain a good ASN.1 parser is therefore to carry out
a long and tedious transformation6 of the standard grammar to obtain
an equivalent grammar, which generates the same language but would
have interesting properties for parsing purposes.

4Though formally specified in BNF, the ASN.1 grammar as it is described in the
standard is not quite appropriate for computing tools. Its designers were rather
concerned with making the semantics of the notation’s constructions straightforward
thanks to self-explicit rule labels.

5http://www.jguru.com/thetick/antlrtut/
6Note we do not call it conversion: this transformation should be done ‘by hand’

since the existence of a grammar, with the adequate properties, which would be equiv-
alent to another grammar is an undecidable problem, i.e. there exists no algorithm
to carry out the transformation [ASU86].

http://www.jguru.com/thetick/antlrtut/

470 ASN.1 – Communication between Heterogeneous Systems

This transformation into LL(1)-compliant form7 of the grammars
of ASN.1:1990 and ASN.1:1997 are respectively detailed in [Rin95] and
[FDD96]. These studies have been the preliminary works necessary for
implementing the Asnp parser available on the web site associated with
this book8.

The LL(1) grammars have some interesting properties: any syntactic
error is guaranted to be flagged as soon as possible during scanning, they
enable the compiler to produce more explicit messages and improve the
error recovery; they make panic-mode error recovery very easy to imple-
ment by removing all the unexpected lexical tokens until a synchroniza-
tion lexical token is found (closing bracket, closing curly bracket, closing
square bracket...); they are easily maintained in the sense that they can
integrate some new grammar productions introduced by amendments on
the standard for example (this property is mainly due to the fact that
the behavior of the parser is directly deduced from the various analy-
sis routines). The main problem of this LL(1) transformation is that
it produces a much larger grammar, in terms of rules (with numerous
repetitions) than the initial standard grammar.

22.4 Other tools

It is only common sense that a specifier should have an ASN.1 compiler,
had it been only to check the syntax and the semantic coherence of the
specifications (even more so if they are meant to be included in standards
or published). But other tools can help to write specifications of better
quality, and in particular:

• a computer-aided syntactic editor, like the Emacs mode9 available
on the web site associated with this book, or a dedicated model
for Microsoft Wordr like the one developed by France Télécom
R&D10, have the following advantages: fast writing (automatic
insertion of pieces of ASN.1 code), completion to avoid typing
the complete tokens, reduction of spelling mistakes (automatic
insertion of some keywords), better readability (highlighting of

7Left to right scanning of the input constructing the Leftmost derivation with 1
token of look-ahead.

8http://asn1.elibel.tm.fr/en/tools/asnp/
9http://asn1.elibel.tm.fr/en/tools/emacs/

10If you are interested, please email to asn1@rd.francetelecom.fr.

http://asn1.elibel.tm.fr/en/tools/asnp/
http://asn1.elibel.tm.fr/en/tools/emacs/
asn1@rd.francetelecom.fr
mailto:asn1@rd.francetelecom.fr

22 - Tools 471

keywords, bold facing for printouts) and automatic indentation
(detection of structural mistakes, straightforward and ‘standard’
layout) [LD97];

• a pretty-printer for typesetting ASN.1 modules in a homoge-
neous way according to specific rules: indentation, boldfacing or
highlighting of keywords, multiple output formats (text, HTML,
LATEX...) [LD97]11.

These tools should obviously provide numerous configuration options to
comply with every user’s needs.

France Télécom R&D, developed for their own needs, a specification
comparator12 for ASN.1 [HD98]. Highly parametrable, this tool
indicates all the syntactic differences (source of interworking problems)
between two specifications. Hence, it can point out the slightest differ-
ences between specifications originating from comparable application
domains such as fixed and mobile intelligent networks. Using Emacs,
one can display side by side the two modules in two different windows
where the syntactic differences are highlighted.

The TeleManagement Forum13 (formerly Network Management Fo-
rum14) and The Open Group Ltd.15 (formerly X/Open), a trade as-
sociation of computer manufacturers that promote the development of
portable applications and open system implementations on Unix plat-
forms, specified an ASN.1/C++ standard interface based on the object
paradigm [TMF96]. It is a group of classes and methods, independent
from this tool used for its implementation, which establishes a map-
ping between ASN.1 types and C++ classes. This interface therefore
constitutes some link between the abstract syntax on one hand and the
concrete syntax on the other. It also makes it possible to define ASN.1
values using C++ syntax (real numbers may for example be defined as
floats by their decimal representation).

It is highly portable, easy to implement, independent from the en-
coding rules (BER, PER...) and self-consistent (one routine carries out

11See footnote 10 on the preceding page.
12See footnote 10 on the preceding page.
13http://www.tmforum.org
14Although defined in the context of network management (see Section 23.3 on

page 482), this interface is independent from the application domain.
15http://www.opengroup.org

http://www.tmforum.org
http://www.opengroup.org

472 ASN.1 – Communication between Heterogeneous Systems

the same task whatever the ASN.1 type involved). By exchanging C++

objects with the communicating application, this interface can make the
low-level implementation of the encoding rules transparent for the higher
levels. These can in fact be chosen dynamically when the application
is running together with the associated options (e.g. aligned/unaligned
variant for the PER). Finally it is possible to check that the value re-
ceived or about to be sent conforms to the subtype constraints of the
specification.

Interfaces with databases have also been developed: [HSO94]
translates an ASN.1 module in a relational database scheme in order to
store and search, using queries of the SQL language, DNA sequences
in the Medline database of NCBI (see on page 92). [HTN] focused
more specifically on object-oriented databases. The ASN.1 modules are
translated into C++ classes, which makes it possible to implement an
ASN.1 database while limiting joins for information extracting.

The encoding and decoding procedures automatically generated from
an ASN.1 specification are generally slower than those implemented di-
rectly by a programmer. [Hos96] and [Hos97] propose to include the
heuristics used by a programmer when optimizing its code: the basic
idea is to predict the frequency with which every type is used relying
on a static analysis of the stream and the profile of the types used by
communicating applications. The optimization stage strikes a balance
between the generated code’s size and its running time.

Around 90% of the routine calls are discarded by analyzing only 50%
of the generated code. Moreover, the code’s size can be cut down by
30 to 50% [Hos93a] using the subtype constraints of the specification
(or introducing appropriate constraints) which indicate that an optional
component is always (or never) present in the values (WITH COMPONENTS

constraint) or limit the set of possible values for a type (INCLUDES con-
straint).

Another possible optimization is suggested in [Bla96]: when a de-
coder receives a message as a bit stream, it compares it with a set of
formats generated by all the previous messages. If no correspondence can
be found, the message is entirely decoded and a new format is stored in
memory; otherwise, an optimized procedure (in which useless tests and
dead-end branching have been removed) is used to decode the message
more quickly. Tests showed that such an implementation could be 70 to
100 times faster than the unoptimized decoders.

22 - Tools 473

Finally, [WBS90] and [BS93] propose to implement BER encoders
and decoders on Very Large Scale Integration (VLSI) chips. A VHDL
(Very high speed integrated circuit Hardware Description Language)
model of these components shows that these are undoubtedly faster than
the equivalent software architecture.

474 ASN.1 – Communication between Heterogeneous Systems

Chapter 23

ASN.1 and the formal
languages SDL, TTCN,
GDMO

Contents

23.1 The formal specification language SDL 476

23.2 The TTCN language for test suites 480

23.3 The GDMO notation for network management 482

Mr Le Hir was a scholar and a saint; he
was both at the utmost. Within a single
person, this cohabitation of two entities,
which could hardly go together in general
was taking place without much noticeable
conflict: the saint always took over and ruled
as a master.

Ernest Renan, Childhood Memories.

So far, ASN.1 has been described as a notation for modeling data trans-
fer of telecommunication protocols. Part of notation is in fact also
used within the formal specification language SDL, the tabular nota-
tion TTCN for protocol testing and the GDMO notation for network
management. In this case, ASN.1 should be considered more as a typ-
ing language for the data handled by those three notations.

476 ASN.1 – Communication between Heterogeneous Systems

23.1 The formal specification language SDL

SDL1 (Specification and Description Language) is a formal language for
specifying telecommunication systems. It provides concepts for struc-
turing such systems and defining their behavior as well as their data.
It was first standardized in 1976 [Z.100]; the object paradigm together
with a better modularity were introduced in 1992.

Originally designed for specifying signalling systems and the way
they interwork, it was extended to take into account all the aspects
of switching systems, protocols in general, telecommunication services,
data processing, etc.. Its popularity has now grown beyond the telecom-
munication community particularly because of the graphical syntax
SDL/GR. The graphical representation provides different items for ev-
ery ‘action’ or event; it is used jointly with the textual syntax SDL/PR,
which is now mainly a common format for the industrial tools associated
with SDL.

An SDL system is a set of finite state machines that work in parallel
and communicate with one another and the system’s outside environ-
ment by means of messages (called ‘signals’). Like all formal notations
(i.e. with a formal semantic, which is not quite the case for ASN.1), SDL
has the following advantages: it describes in a rigorous and structured
way the different functionalities, it avoids ambiguities that may lead to
divergent interpretations, it enables the designer to detect and to ana-
lyze errors early during conception, it improves mutual understanding
between users and designers, it increases interworking and make main-
tenance and updating easier.

A valuable SDL software development kit should have at least the
following features: a graphical editor, a semantic checker to detect in-
consistencies in the specification, a C++ code generator to produce the
procedures that implement the system whose behavior has been speci-
fied, and an automatic test suite generator2.

If the data transfer (or signals) between the processes and the sys-
tem’s environment is specified in ASN.1, the user merely needs to com-
pile the ASN.1 modules to generate the encoding and decoding pro-
cedures and is automatically provided with the whole communicating

1http://www.sdl-forum.org/SDL/index.htm, http://www.telelogic.se/solution/
language/sdl.asp

2http://www.irisa.fr/EXTERNE/projet/pampa/VALIDATION/TGV/TGV.html, for
example.

http://www.sdl-forum.org/SDL/index.htm
http://www.telelogic.se/solution/
http://www.telelogic.se/solution/language/sdl.asp
language/sdl.asp
http://www.telelogic.se/solution/language/sdl.asp
http://www.irisa.fr/EXTERNE/projet/pampa/VALIDATION/TGV/TGV.html

23 - ASN.1 and the formal languages SDL, TTCN, GDMO 477

system (behavior plus data exchanges). The numerous assets of such an
approach are fairly obvious.

The joint use of ASN.1 and SDL was ratified in 1995 by the Z.105
recommendation (it has further been split into two recommendations:
[Z.105] and [Z.107]) , which allows ASN.1 definitions in SDL diagrams
where ASN.1 modules can be imported3. This recommendation presents
a consistent way of specifying the behavior of a telecommunication sys-
tem: the structure and behavior of the system itself are described in
SDL, the data and the signals are defined in ASN.1 and the data encod-
ing refers to the associated ASN.1 encoding rules (see Part III).

ASN.1 is actually an alternative to ACT ONE 4, the default data
type language for SDL, but tends more and more to take over it. ACT
ONE is an algebra-based language using axioms to describe the type’s
properties but not how these can be obtained. In general , it is therefore
hard to include the language as a whole in SDL related tools and in
simulators in particular.

The document [Z.100S1] gives directions for using MSC (Message
Sequence Chart) diagrams of messages with the ASN.1-typed SDL lan-
guage. The MSC diagrams describe specific sequences of events (or
‘stimuli’) while SDL defines the behavior of every one of these stimuli
in each of their possible states.

The [Z.105] recommendation5 imposes a few restrictions on ASN.1
to be able to use in SDL the first part [ISO8824-1] of the ASN.1:1997
standard:

• the hyphens “-” used in ASN.1 references must be replaced by

3Except this [Z.105] recommendation (whose way of putting things is somewhat ob-
scure), details of combined use of ASN.1 and SDL can be found in [OFM96, Appendix
A], [Sch94], and in the numerous and strongly recommended documents available on
the ETSI website like [ETSI114], [ETSI295], [ETSI298], [ETSI383] and [ETSI414].

4ACT ONE was at first adopted by the formal language LOTOS [ISO8807] as the
data type language and then re-used by SDL in the middle of the 1980s when trying
to bring into line the two languages.

5Before its 1999 edition, the SDL notation was not case-sensitive; hence the
Z.105:1995 recommendation imposed also that ASN.1 definitions included directly
in an SDL diagram must end with a semicolon to be supported by the notation (this
rule does not apply to the definitions that appear within ASN.1 modules imported
in an SDL diagram); as a result, two ASN.1 types could not have the same name
regardless of the case whereas a value and a type could have the same labels since
these two concepts are distinct in SDL (in ‘pure’ ASN.1 the two labels’ initials should
at least be case-different); it was, however, recommended to keep these distinct cases
in SDL diagrams.

478 ASN.1 – Communication between Heterogeneous Systems

underscores “ ” in SDL not to confuse them with the subtraction
operator; if the definition of a type labelled Date-and-time is im-
ported from an ASN.1 module, this type must be referenced by
Date and time6 in the SDL diagram;

• if external references such as ModuleName.TypeReference or
ModuleName.valueReference appear in an SDL module, the dot “.”
should be nested in spaces (as in ‘ModuleName . TypeReference’)
because SDL allows dots in references (as well as other symbols
like curly or square brackets);

• tags are allowed but ignored by SDL; it is therefore recommended
to insert the AUTOMATIC TAGS clause in the headers of ASN.1 mod-
ules.

It is recommended to collect in a single ASN.1 module all the ASN.1
definitions imported in an SDL diagram from different ASN.1 modules
(in part or as a whole using the IMPORTS or use clauses). This avoids
to fall back on some ASN.1/SDL-mixed dialects for removing syntactic
ambiguities. We would recommend to use two dedicated tools in parallel
for each one of the two notations instead.

In addition, the [Z.105] recommendation enumerates all the possible
operators applicable to data described in ASN.1; those are summarized
in Appendix B on page 509. In fact the description of these opera-
tors is that which is already known for SDL since this recommendation
merely translates every ASN.1 type into an ACT ONE type. These
correspondences are gathered together into algebraic definitions in the
devoted package called Predefined7. It is nevertheless recommended to
use ACT ONE types only in other ACT ONE type definitions and ref-
erence ASN.1 types in other ASN.1 types rather than mixing the two.

The chart on Figure 23.1 on the next page models with SDL the
architecture of an elevator with two compartments and a general control
process. The latter receives messages from the various floors, determines
a compartment that deals with every call and collects and manages
information coming from the environment or the compartments (call,
floor, current directions of the elevators).

6In the rest of this chapter as well as in Appendix B, the sans serif font is kept for
the SDL notation while the ASN.1 notation remains in teletype font.

7This correspondence is also perfectly described in [OFM96], even though this
book was published before the first edition of recommendation [Z.105].

23 - ASN.1 and the formal languages SDL, TTCN, GDMO 479

block ELEVATOR

 top INTEGER ::= 3;
 ground INTEGER ::= 0;

 /* used by the calling buttons on the floors */
 Direction ::= ENUMERATED { up(1), down(2) };

 Floor ::= INTEGER (ground..top) ;

 /* indicates how the elevator is moving */
 Moving_status ::= ENUMERATED { stopped(0), going_up(1), going_down(2) } ;

 Pos ::=
 SEQUENCE
 { floor Floor,
 status Moving_status } ;

 SIGNAL calling (Floor, Direction), open_door, close_door;
 SIGNAL open_button, close_button, floor_button (Floor) ;
 SIGNAL current_position (pos), init (pos) ;
 SIGNAL floor_relay;

levels

calling

dooropen_door,
close_door

comp_com

init,
current_position

calling

passengers

open_button,
close_button,,
floor_button

relay

floor_relay

compartment
(1,2)

command
(1,1)

Figure 23.1: SDL interconnection diagram for an elevator

480 ASN.1 – Communication between Heterogeneous Systems

Today’s studies of ITU-T and ETSI have led to the emergence of
a new SDL recommendation called SDL-2000, which refers (and sup-
ports) the four parts8 of the ASN.1:1997 standard. SDL has became
case-sensitive and has a clause like ‘USING ENCODING BER’ to specify the
transfer syntax of the messages. All the justifications for these points
can be found in [ETSI680], [ETSI114] or [ETSI295]. The November
1999 version of recommendation [Z.105] is dedicated to the combination
of SDL with ASN.1 modules (hence it forbids inserting ASN.1 definitions
directly in SDL specifications) while a new [Z.107] recommendation al-
lows to embed ASN.1 definitions in SDL.

23.2 The TTCN language for test suites

Testing is part and parcel of the development cycle of a telecommunica-
tion protocol. The use of a formal specification notation (like SDL and
ASN.1 in particular) for telecommunication services or protocols allows
using automated techniques for testing [BG94]. In 1983, ISO started
working on the production of tests regardless of protocols and testing
means. This lead to the ISO 9646 standard series and more particularly
to a language for describing tests very much adapted to protocol testing:
TTCN9 (Tree and Tabular Combined Notation, [ISO9646-3]).

Contrary to a piece of software, the implementation of a protocol is
tested as a ‘black box’ rather than following its behavior step by step (its
existence is not even assumed): it is only considered at the interface level
by sending messages and collecting answers. The test ensures that the
implementation conforms to the specification so that it can interwork
(under the same conditions as those of the tests) with any other system
that uses the same protocol. The features and particular options of this
implementation are specified in a protocol instance compliance statement
(PICS, see footnote 4 on page 379).

The TTCN language offers standard templates for these test suites,
called ‘abstract’ because they do not go into detail as far as the encoding
and decoding are concerned but focus on the interactions by means of
PDUs (or by using service primitives provided by the different layers of

8Originally, Part 2 and 3 were not included for lack of time because modeling them
in ACT ONE proved difficult.

9http://www.telelogic.se/solution/language/ttcn.asp,
http://dis.sema.es/products/Concerto/TtcnPromo/Concerto TTCN.html,
http://www-iiuf.unifr.ch/∼scheurer/ttcn.html

http://www.telelogic.se/solution/language/ttcn.asp
http://dis.sema.es/products/Concerto/TtcnPromo/Concerto_TTCN.html
http://www-iiuf.unifr.ch/~scheurer/ttcn.html

23 - ASN.1 and the formal languages SDL, TTCN, GDMO 481

ASN.1 Type Constraint Declaration
Constraint Name: AcceptTypesDefCtr
ASN.1 Type: AcceptTypes
Derivation Path:
Comments: default constraint for values of AcceptTypes

Constraint Value
{ standards (’10??’B, ’01??’B) IF PRESENT,

others {} IF PRESENT }
Detailed Comments:

Figure 23.2: A TTCN table

the OSI model). This test suite can be run several times or even re-
executed later for subsequent takings resulting from the communicating
system updating. Assisting tools for writing test suites can be found
on the market and a TTCN compiler enables such tool to generate pro-
cedures for executing these suites. TTCN has been used in numerous
domains such as the integrated services digital network (ISDN), GSM,
the X.500 directory, the virtual terminal (VT) and file transfer FTAM
(see on page 81), etc..

TTCN describes its test suites as hierarchical structures of tables (af-
ter which it is named), which indicate the whole set of possible events
(sending or receiving a message, a timeout...) and returns a verdict
depending on the events observed and their ordering. Every piece of
information relevant to the test suite is described in a tabular nota-
tion as in Figure 23.2 (the type AcceptTypes is defined on page 415).
This graphical representation TTCN.GR is equivalent to a textual syn-
tax TTCN.MP (Machine Processable) where the rows and columns are
replaced by keywords.

In order to use directly the ASN.1 specification of the protocol to
be tested, TTCN includes a subset of the first part [ISO8824-1] of the
ASN.1 standard (in fact quite close to ASN.1:1990). Even though ASN.1
is more popular among the specifiers of the highest layers of the OSI
model, TTCN is also used for low-layer protocol test suites. In return,
ASN.1 provides functionalities that TTCN on its own has not: DEFAULT

and OPTIONAL clauses (by default, all the fields inserted in TTCN tables
are optional), the REAL, SET and SET OF types, recursive types (forbidden
in TTCN tables), subtype constraints.

Every ASN.1 type is either defined in a separate table entitled ‘ASN.1

Type Definition’ or imported from a module in a ‘ASN.1 Type Definitions

By Reference’ table, which gathers together all these imported modules

482 ASN.1 – Communication between Heterogeneous Systems

(since external references such as ‘ModuleName.TypeName’ are forbidden in
TTCN). When importing these modules the hyphens “-” are replaced
by underscores “ ” as in SDL.

The combined use of ASN.1 & TTCN and the description of TTCN
functions that can be applied to ASN.1 values are perfectly described
in [ETSI101], [BG94], [ETSI56] and [ETSI141]. The syntax of ASN.1
values is extended to use the wildcards ‘?’ (which stands for any value),
‘*’ (any value or none at all) and OMIT (no value).

ETSI and ISO have completed the next TTCN standard, called
TTCN-3 or [Z.140]: it is fully compliant with ASN.1:1997, i.e. it in-
cludes information object classes, objects and object sets, extensibil-
ity (more specifically for tests involving PER encoding), the exception
marker (which could be useful if recorded in the log files of TTCN tools)
and parameterization.

23.3 The GDMO notation for network manage-
ment

After the development of numerous telecommunication protocols and as
networks were sprawling and tended to be more and more heterogeneous,
technical supervising and administrating these protocols and networks
became a necessity. The functional areas that are usually covered by su-
pervision are configuration management (set-up, resource visualization,
state and command management), security (authentication, authoriza-
tion and accounting), fault (alarm supervision, fault location, tests and
test measurement), performance (data collection, traffic management
and quality of service) and accounting (account statement, invoicing
parameters).

In order to take into account the heterogeneity of equipment and
the different sizes of open networks (whether public or private), su-
pervision10 relies on a virtual representation of the network that offers
high-level functions independent from the underlying equipment (ergo
from its manufacturer) [Ram98].

10http://www.dkrz.de/∼k202046/em/products/sem/Manuals/dev guide/
network.doc.html

k202046/em/products/sem/Manuals/dev_guide/
http://www.dkrz.de/~k202046/em/products/sem/Manuals/dev_guide/network.doc.html
network.doc.html
http://www.dkrz.de/k202046/em/products/sem/Manuals/dev_guide/network.doc.html

23 - ASN.1 and the formal languages SDL, TTCN, GDMO 483

coffee-machine MANAGED OBJECT CLASS

DERIVED FROM "ITU-T Rec. X.721|ISO/IEC 10165-2:1992":top;

CHARACTERIZED BY coffee-machine-pkg;

CONDITIONAL PACKAGES

coin-container-pkg PRESENT IF

!the instance has the attribute coin-level!;

REGISTERED AS {iso member-body(2) f(250) type-org(1) ft(16)

asn1-book(9) chapter23(6) managedObjectClass(3)

coffee-machine(0)};

coffee-machine-pkg PACKAGE

BEHAVIOUR coffee-machine-beh;

ATTRIBUTES

coffee-machine-id GET,

"ITU-T Rec. X.721|ISO/IEC 10165-2:1992":operationalState GET,

water-level GET,

coffee-level GET,

sugar-level GET;

NOTIFICATIONS alarm-level, out-of-order;

REGISTERED AS {iso member-body(2) f(250) type-org(1) ft(16)

asn1-book(9) chapter23(6) package(4) coffee-machine(0)};

coffee-level ATTRIBUTE

WITH ATTRIBUTE SYNTAX CoffeeMachine.CoffeeLevel;

MATCHES FOR EQUALITY, ORDERING;

REGISTERED AS {iso member-body(2) f(250) type-org(1) ft(16)

asn1-book(9) chapter23(6) attribute(7) coffee-level(0)};

CoffeeMachine{iso member-body(2) f(250) type-org(1) ft(16)

asn1-book(9) chapter23(6) asn1Module(2) coffee-machine(0)}

DEFINITIONS ::=

BEGIN

CoffeeLevel ::= INTEGER { empty(0), low(1), high(10) }

-- ...

END

Figure 23.3: Extract of the GDMO specification for supervising a coffee
machine

484 ASN.1 – Communication between Heterogeneous Systems

The equipment interfaces and software components of the network
are modeled by these objects (called managed objects), which contain
only properties that are useful for supervision. These properties can be:

• attributes reflecting the state of the network resource, a type of
service...;

• actions that the supervisor may take on the resource (performance
tests for example);

• notifications sent by the resource when a problem occurs;

• behaviors explaining how the resource reacts on the management
interface’s level.

Every one of these properties is modeled by a template described in
the semi-formal object notation GDMO (Guidelines for the Definition of
Managed Objects) [ISO10165-4]. Indeed, the structure of the network
and its equipment is more easily represented using the object paradigm.
Figure 23.3 on the preceding page presents some GDMO templates for
supervising a coffee machine [Heb95].

The GDMO templates11 can reference ASN.1 types and values ev-
ery time it is necessary. Definitions should conform to the ASN.1:1997
[ISO8824-1] standard, but before migrating modules from ASN.1:1990
to ASN.1:1994/97 (see Section 6.4.2 on page 73), one must check that
the GDMO tools to be used support the functionalities introduced in
1994 such as information object classes and parameters.

We may then come across:

• ASN.1 external value references (see Section 9.3 on page 117) in the
DEFAULT VALUE and INITIAL VALUE clauses of the PACKAGE templates
to represent the initial and default value of an attribute;

• an external type reference in the PERMITTED VALUES and REQUIRED

VALUES clauses of the PACKAGE templates to represent the permitted
and required value sets of an attribute;

11It is interesting to note that, but for a few syntactic changes, every one of these
templates could be represented by an information object class (see Chapter 15), which
would make buying a GDMO parser unnecessary (even less so since it often supports
the ASN.1 standard rather poorly).

23 - ASN.1 and the formal languages SDL, TTCN, GDMO 485

• an external type reference in the WITH ATTRIBUTE SYNTAX clause of
the ATTRIBUTE templates to indicate the ASN.1 type of the values
that this attribute can take;

• an external type reference in the WITH INFORMATION SYNTAX and
WITH REPLY SYNTAX clauses of the ACTION templates to indicate the
arguments type of the action and the type of the data returned;

• an external type reference in the WITH INFORMATION SYNTAX and
WITH REPLY SYNTAX clauses, and identifiers (lexical tokens begin-
ning with a lower-case letter) in the AND ATTRIBUTE IDS clause of
the NOTIFICATION templates;

• an external type reference in the WITH SYNTAX clause of the
PARAMETER templates to indicate the ASN.1 type of this param-
eter;

• ASN.1 syntax in comments for the PRESENT IF clauses of the
MANAGED OBJECT CLASS templates, or in BEHAVIOUR templates.

The type and value definitions used in a GDMO specification are
therefore collected in one or several ASN.1 modules and every reference
is systematically preceded by the module where it is defined.

Besides, all templates written in GDMO can be registered in the
universal registration tree (see Section 10.8 on page 153, and more par-
ticularly Figure 10.4 on page 161) and their object identifiers which ap-
pear in curly brackets in a REGISTERED AS clause, will be carried by the
Common Management Information Protocol (CMIP12) each time the
supervisor wants to operate a remote control on the network element
but also when a component sends an alarm notification for instance.
Note that it is the static descriptions of the managed objects that are
actually registered (‘for ever’) in the registration tree but not the objects
themselves, which are created and deleted dynamically every time the
network configuration is changed (the managed objects are identified by
other mechanisms, independent from those which enable the designer to
define the GDMO templates).

The standards for network management (ITU-T X.700 series) have
been rewritten to take into account the latest ASN.1:1997 edition; they
will be officially available by February 2000. The use of information

12The data transfer of the CMIP protocol are obviously specified in ASN.1.

486 ASN.1 – Communication between Heterogeneous Systems

object classes13 should make the encoding of data involved in the X.700
recommandation series easier (since they avoid repeating the same object
identifier); they should also improve the subtyping of attributes that are
open types (in place of the obsolete ANY type) and replace the ERROR

and OPERATION macros referenced in the CMIP protocol. Moreover, the
information object classes (see Chapter 15) would permit the specifier to
define dynamically the parameters’ type in the ACTION and NOTIFICATION

templates using dynamically-extensible object sets.
Until the management tools are updated, it is recommended to pro-

duce two ‘equivalent’ modules (with the same object identifiers): one
in ASN.1:1990, another in ASN.1:1997. For doing so, one may refer to
the recommendations given in [ISO10165-4, Amendment 2] or [ETSI295]
(see also Section 6.4 on page 72).

13Note that the concepts of managed object class in GDMO and information object
class in ASN.1 have nothing in common.

Chapter 24

Other abstract syntax
notations

Contents

24.1 Sun Microsystems’ XDR notation 488

24.2 Apollo Computer’s NIDL notation 490

24.3 OMG IDL language for CORBA 490

24.4 RFC 822 notation for the Internet 492

24.5 EDIFACT notation . 492

We can move from one language to
another, but in doing so we accept new
constraints and make new mistakes. We also
adopt a different tone, enjoying the je ne sais
quoi of Sprachgefühl.

Robert Darnton, The Great Cat Massacre.

There exist many abstract notations that can be compared with
ASN.1 and even compete with it in some respects. We shall present the
most widespread and underline their similarities and their differences.
We will see that, compared with ASN.1, these generally suffer from a
lack of generality in their modeling and abstraction potential (less types
or less generic ones, no extensibility, no parameterization, less efficient
encoding than the PER) regarding the diversity of system architectures.

488 ASN.1 – Communication between Heterogeneous Systems

As a matter of course, we eliminate the data type notation of pro-
gramming languages (C, Java1...) because, even though these notations
are independent from system architecture, the same does not go for the
internal memory storage, which may change from one system to another
thereby forbidding any common and generic representation.

24.1 Sun Microsystems’ XDR notation

The remote procedure call (RPC) enables a machine (the client) to ex-
ecute a procedure on another machine of a network (the server) which
means that for the client application, executing a remote procedure is
similar to calling a local subroutine [Cor91]. It is equivalent to the
Remote Operation Service Element (ROSE) of OSI (see on page 80).
RPC is the cornerstone of the distributed file system NFS (Network
File System), which enables a user to manage files in a transparent way
on different machine architectures; it is also the basis of the Network
Information Service (NIS) directory, also known as the ‘yellow pages’.

One of the first RPC mechanisms was developed in the 1970s by
James White who would later designed the Courier notation, Xerox’s
RPC mechanism whose abstract notation was the forerunner of ASN.1
(see History on page 60). The RCP mechanism, which became de facto
a standard for Unix systems was designed by Sun Microsystems Inc. in
1985.

To model the interface between client and server, viz. describe the
data to be exchanged, Sun designed the XDR notation (eXternal Data
Representation) [RFC1832]. Strongly influenced by Courier, XDR syn-
tax is close to the C language’s, which is very much to the liking of
the communicating application programmers. One could even say that
XDR is for C what Courier is for Mesa! (see footnote 12 on page 60.)
From an XDR model of an interface, an RPCGEN compiler (many of
the versions of which are available in the public domain) generates a ‘.c’

1Even though Java makes it possible to exchange structured data between a client
and a server regardless of their architectures, these two applications need to be im-
plemented in Java, whereas ASN.1 is independent from the programming language
and can therefore make two applications communicate whether they are implemented
in the same language or not. In addition, Java imposes size limitations on inte-
gers whereas ASN.1 imposes no such limitation. In Chapter 22, we mentioned that
ASN.1 compilers for Java are being developed: they will provide Java with ASN.1
functionality and flexibility.

24 - Other abstract syntax notations 489

source file for the client, another ‘.c’ file for the server and a common
‘.h’ header file.

XDR was only thought up as a means of exchanging data in a simple
and efficient way in an RPC-like architecture and cannot model easily
such complex structures as those handled in the context of X.400 e-mail
systems, which eventually lead to ASN.1 (see Section 7.2 on page 81): no
mechanism exists for defining optional components in structures (but for
using ‘discriminated unions’); the mere notion of extensibility does not
(and cannot) exist since the XDR description of types relates directly
to their encoding; the concepts of module and imports are unknown to
XDR so that specifying complex interfaces and re-using existing modules
is more difficult; the absence of a type for bit strings is a weak point in
a multimedia environment.

Besides, every time the communicating applications’ architectures
reach the limit of the XDR encoding, a new type has to be introduced
in the notation and new encoding rules have to be associated with it: this
happened for instance for the hyper integer, type which was specifically
created so that 64-bit integers could be supported (incidentally there
is no superlative left, so how is it going to keep up with the 128-bit
integers?!).

Concerning the transfer syntax, all the values (including the
booleans) are encoded on 32 bits. This fixed alignment prevents it from
systematically encoding the value length. At first thought, the four-
byte alignment, which is quite close to the machines’ own architecture,
could be expected to benefit from more efficient routines and therefore
induce no translation at all. Several studies, however, point out that
with very little effort put into optimizing2 the ASN.1 compilers, BER
(and even PER) encoders and decoders are often more efficient (regard-
ing size and speed) than their XDR counterparts ([MC93], [DHV92],
[HC92], [Hos93b], [SN93]). XDR is therefore only recommended for
today’s most common machine architectures because the data transfer
induced minimizes the conversion to their own formats.

2The BER decoders are sometimes criticized for spending most of their computing
time in extracting and checking the tag and length fields (T and L). The decoders
can, however, be optimized for ignoring the fields that are assumed to be known.

490 ASN.1 – Communication between Heterogeneous Systems

24.2 Apollo Computer’s NIDL notation

For the development tool kit of distributed applications of the Network
Computing Architecture (NCA), Apollo Computer Inc., a subsidiary
of Hewlett-Packard, developed the Network Interface Description Lan-
guage (NIDL) and the encoding rules called Network Data Represen-
tation (NDR) to model data transfer using RPC ([PR89], [KDL87],
[ISO11578]).

Besides being also in the public domain as its counterpart from Sun,
NIDL very much looks like Sun’s XDR notation in the sense that it is
very close to C language. Its encoding rules, however, are not based on a
neutral transfer format: no tag field is transmitted but it is replaced by
an information byte that indicates the sending-machine architecture and
its internal-representation conventions (decimal format, bit weights...)
because the encoding varies with the sender so that the receiver has
to operate the appropriate conversions. It is an example of symmetric
communications presented in Figure 2.3(a) on page 12.

The main inconvenience of this approach was discussed in Chap-
ter 2: the receiver needs several converters for a network of heteroge-
neous machine architectures; if the adequate configuration converter is
not available to the receiver, then the closest one is used, which may
lead to erroneous data decoding. Otherwise, the decoder of every ma-
chine in the network should be updated so that the new format could be
properly converted. This is quite similar to what was described for the
LWER encoding rules in Section 21.1 on page 454. The encoding rou-
tines are obviously easy to implement since they are close to the sender’s
internal-memory storing format.

The benchmarks of the NDR compare with those of XDR if the
architectures of the sender and the receiver are different; they perform
better if the architectures are identical. Generally speaking, they remain
less efficient than a PER or BER encoding [SN93].

24.3 OMG IDL language for CORBA

The Common Object Request Broker Architecture (CORBA) is an
object-oriented architecture specification. It is independent from the
programming language, the platform implementation and the provider;
it offers services like labelling or error notification [OPR96]. It was

24 - Other abstract syntax notations 491

developed in 1990 by the Object Management Group (OMG), an asso-
ciation of about 500 members in charge of promoting the object-oriented
techniques in view to integrating the existing applications in distributed
environments. It is now standardized [ISO14750].

With every CORBA class or service, is associated an interface that
defines, in particular, the object’s attribute types, i.e. the parameter
types to be provided by a requesting client, and the data types re-
turned by the server as the result of this request. This interface is
described in IDL (Interface Definition Language) whose syntax is close
to C++. Independent from programming languages, the interface hides
the implementation-specific details for every system architecture.

The interface definitions, once grouped in modules, are processed
by an IDL compiler to generate communication procedures for both
the client and the server (the use of an IDL compiler is very close to
that of an ASN.1 compiler described in Figure 22.2 on page 465). For
the moment, the target languages standardized by OMG are C, C++,
Smalltalk, Lisp, Java, Ada and COBOL.

The Joint Inter-Domain Management (JIDM) forum created in 1993
by the Open Group (formerly X/Open Consortium), and TeleMan-
agement Forum (formerly Network Management Forum) propose a bi-
directional translation between GDMO/ASN.1 (see Section 23.3 on
page 482) and IDL to allow the CORBA-compliant applications to
support equipment that are usually managed by the CMIP protocol
([TMF96], [Gen96]).

The translation from IDL to ASN.1 poses no difficulties; it builds up
a bridge from the OSI world to CORBA architectures to use automatic
TTCN-test generation tools (see Section 23.2 on page 480), as explained
in [ETSI56, Appendix B] for example. In the other way about, the
translation suffers from loss of information (all tags, some subtype con-
straints, some abstract value definitions, some constructed type clauses
for instance) because ASN.1 proves to be of a higher level than IDL.
Moreover, when using BER encoding, the systematic use of tag and
length fields allows the decoder to ignore the unrecognized components
(for extensible structures in particular) while remaining capable of re-
laying those components the way it received them (see on page 250).
Finally, a PER encoding is much less verbose than encodings produced
with CORBA.

Since it is derived from the C language as XDR, IDL provides no
generic integer type and imposes to restrict the length of the integer

492 ASN.1 – Communication between Heterogeneous Systems

values by choosing among different pre-defined integer types. It does
not allow for downwards referencing as it is frequently used in ASN.1
‘top-down’ specifications and does not support recursive types whose
cycles are greater than 1. Finally, IDL syntax is not case-sensitive and
imposes restrictions on the length of identifiers and references (which is
restrictive for specification lengths). Renaming therefore also necessary
to take into account the lexical differences between the two notations
and the scope differences among identifiers.

24.4 RFC 822 notation for the Internet

The Augmented Backus-Naur Form (ABNF, [RFC2234]) can describe
grammars by a syntax which software designers are already familiar with
since it is very much like the syntax used for specifying the grammar
of computing languages. Hence it is not particularly dedicated to the
specification of data types.

The [RFC822] encoding has been used for a very long time now
for text-based Internet electronic mail. It is conceptually the simplest
way of exchanging data between heterogeneous systems: these data are
textually described in an alphabet that the systems3 have agreed on.
Simple, readable, extensible and easy to implement (if the extensions
are sensible and homogeneous), this notation is, however, very expensive
in terms of bandwidth and not appropriate for describing complex data
structures.

24.5 EDIFACT notation

EDIFACT4 (Electronic Data Interchange for Finance, Administration,
Commerce, and Transport) is both a graphical notation and a set of
encoding rules developed in parallel with the studies on the OSI model
while people of one group were unaware of what the others were work-
ing on. Standardized by ISO [ISO9735], this notation was specifically
designed for exchanging commercial data for which it ensures a unique
capture and makes data processing easier.

3For example, the boolean value ‘true’ is represented by the character string
“TRUE”.

4http://www.unece.org/trade/untdid/welcome.htm

http://www.unece.org/trade/untdid/welcome.htm

24 - Other abstract syntax notations 493

LIN

M 1

AAA

C 1

BBB

C 1

RRR

M 1

QQQ

M 1

PPP

M 1

MMM

M 1

M 50

M n = Mandatory, from 1 to n repetitions
C n = Conditional, from 0 to n repetitions

Figure 24.1: A diagram of EDIFACT message

The EDIFACT exchange is a collection of messages (invoices for ex-
ample) made of several segments (the invoice’s lines) of data (quantity,
address...). Every segment is labelled by a three-capital-letter name, e.g.
NAD (Name And Address) for some individual’s details, which has to be
standardized in the Trade Data Elements Directory (TDED), an interna-
tional directory [ISO7372]. The position of the data within the message
pattern indicates the nature (and the content) of the transmitted data.

An example of EDIFACT graphical specification is given in Fig-
ure 24.1 (imagine it is the line of an ordering form). The tree-like
structure introduces a hierarchy between the segments. The encoding
is carried out by a depth-first traversal of this structure. By definition
the EDIFACT standard uses a character-based encoding since the doc-
uments were originally meant to be sent by Telex. The different parts of
a message are therefore delimited by specific symbols negotiated before-
hand: by default the data components are separated by “:”, the data
themselves by “+” and a message ends with “’”. It is therefore needless
to specify the data lengths since all the data are delimited.

For an invoice, the following line:

Ref. Description Qty Price () Amount
5750 321Q ASN.1 Compiler 1 15,000.00 15,000.00

can be encoded as:

LIN++5750321Q:CN1+1:21:PC+15000:CA:1+1+15000

This position-based encoding favors efficiency at the expense of flex-
ibility and sometimes against syntactic rigor (some ambiguities in the

494 ASN.1 – Communication between Heterogeneous Systems

graphical syntax were detected). The messages are thus designed with
a structure similar to that of the documents they are meant to replace.
All the delimiting symbols must therefore be transmitted even when the
following item of data is absent not to shift the other data (in BER
encoding the tag field T provides a means of determining this position).
The messages and segments to be sent are necessarily pre-defined and
encoded with a header that must be standardized in the TDED directory
[ISO7372]. As a result, extensibility is not easily supported.

One can quickly be convinced that the EDIFACT notation is much
less powerful5 than ASN.1 simply by looking at Figure 24.1 on the page
before; the former cannot be used for modeling protocol arbitrarily
complex as those of the OSI Application layer: the translation of an
EDIFACT diagram in ASN.1 is trivial but the reverse is not true [TH].

Using ASN.1 in this area would make it possible to take advan-
tage of the secured mechanisms designed in the OSI world which prove
very useful when exchanging digital data but would also come along
with the numerous tools and compilers developed for ASN.1. The best
way to convince oneself is to have a look at the user-friendly syntax
of an information object class (see Section 15.3 on page 323) that pre-
serves the notation’s readability and is very much appreciated outside
the computing-world.

Some EDI standards may also go towards XML (eXtensible Markup
Language), a self-descriptive language derived from HTML which hap-
pens to be very much fashionable these days on the Web [Bra98]. Like
EDIFACT, XML is more suitable for describing the logical structure
of electronic documents and is therefore not appropriate for arbitrarily
complex data.

5“It would not be totally unreasonable to equate ASN.1 with Fortran and EDIFACT
with COBOL!” [Lar96].

Chapter 25

Epilogue

‘And that’, put in the Director senten-
tiously, ‘that is the secret of happiness and
virtue – liking what you’ve got to do. All
conditioning aims at that: making people like
their unescapable social destiny.’

Aldous Huxley, Brave New World.

496 ASN.1 – Communication between Heterogeneous Systems

Part V

Appendices

Appendix A

Encoding/decoding
simulations

We give the encoding/decoding of the value of type GetRequest that we
used in Section 18.4 on page 415 and Section 20.7 on page 451. This
simulation is generated automatically with the “-test” option of the
ASN.1 compiler developed by OSS Nokalva1.

It is divided into five stages: the value is encoded and then decoded
in BER (using both the definite and the indefinite formats), in DER and
finally in PER (using the aligned and the unaligned variants).

MyHTTP DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

GetRequest ::= SEQUENCE {

header-only BOOLEAN,

lock BOOLEAN,

accept-types AcceptTypes,

url Url,

... }

AcceptTypes ::= SET {

standards BIT STRING {html(0), plain-text(1), gif(2),

jpeg(3)} (SIZE (4)) OPTIONAL,

others SEQUENCE OF VisibleString (SIZE (4)) OPTIONAL }

Url ::= VisibleString (FROM ("a".."z"|"A".."Z"|"0".."9"|

"./-_~%#"))

END

1http://www.oss.com/products/tools.html

http://www.oss.com/products/tools.html

500 ASN.1 – Communication between Heterogeneous Systems

---------- Run 1 of the BER DEFINITE-Length Encoder ----------

Unencoded PDU...

value GetRequest ::= {

header-only TRUE,

lock FALSE,

accept-types {

standards { html, plain-text } },

url "www.asn1.com" }

Checking constraints...

Constraints checking succeeded

Tracing Information from the BER DEFINITE-Length Encoder...

GetRequest SEQUENCE: tag= [UNIVERSAL 16] constructed; length= 26

header-only BOOLEAN: tag = [0] primitive; length = 1

TRUE

lock BOOLEAN: tag = [1] primitive; length = 1

FALSE

accept-types AcceptTypes SET: tag = [2] constructed; length = 4

standards BIT STRING: tag = [0] primitive; length = 2

0x04c0

url Url VisibleString: tag = [3] primitive; length = 12

"www.asn1.com"

PDU successfully encoded, in 28 bytes:

301A8001 FF810100 A2048002 04C0830C 7777772E 61736E31 2E636F6D

========== Run 1 of the BER Decoder for DEFINITE PDU ==========

Tracing Information from Decoder...

GetRequest SEQUENCE: tag= [UNIVERSAL 16] constructed; length= 26

header-only BOOLEAN: tag = [0] primitive; length = 1

TRUE

lock BOOLEAN: tag = [1] primitive; length = 1

FALSE

accept-types AcceptTypes SET: tag = [2] constructed; length = 4

standards BIT STRING: tag = [0] primitive; length = 2

0x04c0

url Url VisibleString: tag = [3] primitive; length = 12

"www.asn1.com"

A - Encoding/decoding simulations 501

PDU successfully decoded, in 32 bytes

Decoded PDU...

value GetRequest ::= {

header-only TRUE,

lock FALSE,

accept-types {

standards { html, plain-text } },

url "www.asn1.com" }

Copying the Decoded PDU...

Comparing the Original and Copied PDUs...

Value comparison succeeded

---------- Run 1 of the BER INDEFINITE-Length Encoder ----------

GetRequest SEQUENCE: tag= [UNIVERSAL 16] constructed; length= indef

header-only BOOLEAN: tag = [0] primitive; length = 1

TRUE

lock BOOLEAN: tag = [1] primitive; length = 1

FALSE

accept-types AcceptTypes SET: tag= [2] constructed; length= indef

standards BIT STRING: tag = [0] primitive; length = 2

0x04c0

EOC

url Url VisibleString: tag = [3] primitive; length = 12

"www.asn1.com"

EOC

PDU successfully encoded, in 32 bytes:

30808001 FF810100 A2808002 04C00000 830C7777 772E6173 6E312E63

6F6D0000

502 ASN.1 – Communication between Heterogeneous Systems

========== Run 1 of the BER Decoder for INDEFINITE PDU ==========

GetRequest SEQUENCE: tag= [UNIVERSAL 16] constructed; length= indef

header-only BOOLEAN: tag = [0] primitive; length = 1

TRUE

lock BOOLEAN: tag = [1] primitive; length = 1

FALSE

accept-types AcceptTypes SET: tag= [2] constructed; length= indef

standards BIT STRING: tag = [0] primitive; length = 2

0x04c0

EOC

url Url VisibleString: tag = [3] primitive; length = 12

"www.asn1.com"

EOC

PDU successfully decoded, in 32 bytes

---------- Run 1 of the DER Encoder ----------

GetRequest SEQUENCE: tag= [UNIVERSAL 16] constructed; length= 26

header-only BOOLEAN: tag = [0] primitive; length = 1

TRUE

lock BOOLEAN: tag = [1] primitive; length = 1

FALSE

accept-types AcceptTypes SET: tag = [2] constructed; length = 4

standards BIT STRING: tag = [0] primitive; length = 2

0x06c0

url Url VisibleString: tag = [3] primitive; length = 12

"www.asn1.com"

PDU successfully encoded, in 28 bytes:

301A8001 FF810100 A2048002 06C0830C 7777772E 61736E31 2E636F6D

========== Run 1 of the DER Decoder ==========

GetRequest SEQUENCE: tag= [UNIVERSAL 16] constructed; length= 26

header-only BOOLEAN: tag = [0] primitive; length = 1

TRUE

lock BOOLEAN: tag = [1] primitive; length = 1

FALSE

accept-types AcceptTypes SET: tag = [2] constructed; length = 4

standards BIT STRING: tag = [0] primitive; length = 2

0x06c0

url Url VisibleString: tag = [3] primitive; length = 12

"www.asn1.com"

A - Encoding/decoding simulations 503

PDU successfully decoded, in 32 bytes

---------- Run 1 of the PER ALIGNED Encoder ----------

Unencoded PDU...

value GetRequest ::=

{

header-only TRUE,

lock FALSE,

accept-types

{

standards { html, plain-text }

},

url "www.asn1.com"

}

Checking constraints...

Constraints checking succeeded

Tracing Information from the PER ALIGNED Encoder...

GetRequest SEQUENCE [fieldcount (not encoded) = 4]

header-only BOOLEAN [length (not encoded) = 0.1]

TRUE

lock BOOLEAN [length (not encoded) = 0.1]

FALSE

accept-types AcceptTypes SET [fieldcount (not encoded) = 1]

standards BIT STRING [length (not encoded) = 0.4]

0xc0

url Url VisibleString [length = 12.0]

"www.asn1.com"

Total PDV length = 15.0

PDU successfully encoded, in 15 bytes:

56000C77 77772E61 736E312E 636F6D

The ossPrintPer() function used hereafter was developed specifically
to give applications such as in protocol analyzers direct control over
formatting and display of the output, while showing the fields of the
PER output in great detail. In the majority of cases, direct control over
the format of the output is not expected, in which case either the default
display format can be used, or it can be altered simply by use of runtime
flags.

504 ASN.1 – Communication between Heterogeneous Systems

The likes of “OFFSET: 32,2” means that the field occured in octet 32,
at bit 2. The likes of “LENGTH: 4,6” means that the total length of the
value that follows (including the “length:” field) is 4 octets and 6 bits
longs. Symbols “<” and “>” such as in “<000000>” signify that the value
is shown in binary (six 0 bits in this case). The period “.” in front of
values such as “.FE” and “<.10>” signifies an octet boundary.

========== Run 1 of the PER ALIGNED ossPrintPER ==========

ossPrintPER output...

value GetRequest ::=

{

--TYPE INFORMATION: SEQUENCE

--OFFSET: 0,0

--extension flag: <.0>

header-only TRUE,

--TYPE INFORMATION: BOOLEAN

--OFFSET: 0,1; LENGTH: 0,1

--contents: <1>

lock FALSE,

--TYPE INFORMATION: BOOLEAN

--OFFSET: 0,2; LENGTH: 0,1

--contents: <0>

accept-types

{

--TYPE INFORMATION: SET

--OFFSET: 0,3

--preamble: <10>

--bit #0 = 1: ’standards’ is present

--bit #1 = 0: ’others’ is absent

standards { html, plain-text }

--TYPE INFORMATION: BIT STRING (SIZE(4)) {html(0),

plain-text(1),gif(2),jpeg(3)} OPTIONAL

--OFFSET: 0,5; LENGTH: 0,4

--contents: <110.0>

},

url "www.asn1.com"

--TYPE INFORMATION: VisibleString

--OFFSET: 1,1; LENGTH: 13,7

--padding: <0000000>

--length: .0C (decoded as 12)

--contents: .77.77.77.2E.61.73.6E.31.2E.63.6F.6D

}

A - Encoding/decoding simulations 505

--TOTAL LENGTH: 15,0

ossPrintPER finished...

========== Run 1 of the PER ALIGNED Decoder ==========

Tracing Information from Decoder...

GetRequest SEQUENCE [fieldcount (not encoded) = 4]

header-only BOOLEAN [length (not encoded) = 0.1]

TRUE

lock BOOLEAN [length (not encoded) = 0.1]

FALSE

accept-types AcceptTypes SET [fieldcount (not encoded) = 1]

standards BIT STRING [length (not encoded) = 0.4]

0xc0

url Url VisibleString [length = 12.0]

"www.asn1.com"

Total PDV length = 15.0

PDU successfully decoded, in 32 bytes

Decoded PDU...

value GetRequest ::=

{

header-only TRUE,

lock FALSE,

accept-types

{

standards { html, plain-text }

},

url "www.asn1.com"

}

Copying the Decoded PDU...

Comparing the Original and Copied PDUs...

Value comparison succeeded

506 ASN.1 – Communication between Heterogeneous Systems

---------- Run 1 of the PER UNALIGNED Encoder ----------

Unencoded PDU...

value GetRequest ::=

{

header-only TRUE,

lock FALSE,

accept-types

{

standards { html, plain-text }

},

url "www.asn1.com"

}

Checking constraints...

Constraints checking succeeded

Tracing Information from the PER UNALIGNED Encoder...

GetRequest SEQUENCE [fieldcount (not encoded) = 4]

header-only BOOLEAN [length (not encoded) = 0.1]

TRUE

lock BOOLEAN [length (not encoded) = 0.1]

FALSE

accept-types AcceptTypes SET [fieldcount (not encoded) = 1]

standards BIT STRING [length (not encoded) = 0.4]

0xc0

url Url VisibleString [length = 12.0]

"www.asn1.com"

Total PDV length = 12.5

PDU successfully encoded, in 13 bytes:

560677EF DD761E7B 98AEC7BF 68

A - Encoding/decoding simulations 507

========== Run 1 of the PER UNALIGNED ossPrintPER ==========

ossPrintPER output...

value GetRequest ::=

{

--TYPE INFORMATION: SEQUENCE

--OFFSET: 0,0

--extension flag: <.0>

header-only TRUE,

--TYPE INFORMATION: BOOLEAN

--OFFSET: 0,1; LENGTH: 0,1

--contents: <1>

lock FALSE,

--TYPE INFORMATION: BOOLEAN

--OFFSET: 0,2; LENGTH: 0,1

--contents: <0>

accept-types

{

--TYPE INFORMATION: SET

--OFFSET: 0,3

--preamble: <10>

--bit #0 = 1: ’standards’ is present

--bit #1 = 0: ’others’ is absent

standards { html, plain-text }

--TYPE INFORMATION: BIT STRING (SIZE(4)) {html(0),

plain-text(1),gif(2),jpeg(3)} OPTIONAL

--OFFSET: 0,5; LENGTH: 0,4

--contents: <110.0>

},

url "www.asn1.com"

--TYPE INFORMATION: VisibleString

--OFFSET: 1,1; LENGTH: 11,4

--length: <0000110.0> (decoded as 12)

--contents: <1110111>.EF.DD.76.1E.7B.98.AE.C7.BF.<01101>

}

--PDU padding: <000>

--TOTAL LENGTH: 13,0

ossPrintPER finished...

========== Run 1 of the PER UNALIGNED Decoder ==========

Tracing Information from Decoder...

508 ASN.1 – Communication between Heterogeneous Systems

GetRequest SEQUENCE [fieldcount (not encoded) = 4]

header-only BOOLEAN [length (not encoded) = 0.1]

TRUE

lock BOOLEAN [length (not encoded) = 0.1]

FALSE

accept-types AcceptTypes SET [fieldcount (not encoded) = 1]

standards BIT STRING [length (not encoded) = 0.4]

0xc0

url Url VisibleString [length = 12.0]

"www.asn1.com"

Total PDV length = 12.5

PDU successfully decoded, in 32 bytes

Decoded PDU...

value GetRequest ::=

{

header-only TRUE,

lock FALSE,

accept-types

{

standards { html, plain-text }

},

url "www.asn1.com"

}

Copying the Decoded PDU...

Comparing the Original and Copied PDUs...

Value comparison succeeded

All values encoded and decoded successfully.

Appendix B

Combined use of ASN.1
and SDL

Here are a few guidelines for combining ASN.1 types and values with
SDL [Z.105]. Unfortunately, some tools do not support all of the fol-
lowing and impose some syntactic restrictions. These guidelines are
consistent with the 1995 version of the [Z.105] recommendation. The
new November 1999 version forbids inserting ASN.1 definitions directly
in SDL specifications.

BOOLEAN : the operators available are: =, /=, not, and, or, xor, =>

- tip: rename the values TRUE and FALSE to make the specification
more readable (with “Synonym yes BOOLEAN = TRUE;” for exam-
ple);

NULL : the operators available are: =, /= (not much use!);

INTEGER : the operators available are: =, /=, >, <, >=, <=, Float, +, -,
*, /, - (unary), rem, mod;
- all identifiers (beginning with a lower-case letter) appearing in
definitions of type INTEGER and BIT STRING must be distinct within
the same System, Block, Process, Procedure or Service; therefore the
two following types cannot be defined within the same scope:

T1 ::= INTEGER {write(5)};
T2 ::= BIT STRING {write(0), read(1)};

- tip: use a value range constraint to make automatic test genera-
tion easier;

510 ASN.1 – Communication between Heterogeneous Systems

ENUMERATED : to every ENUMERATED it corresponds a specialization of the
new type Enumeration introduced by [Z.105];
- operators: =, /=, >, <, >=, <=, Num, Pred, Succ, First, Last;
- examples: Day ::= ENUMERATED {monday(1), tuesday(2),

wednesday(3), thursday(4), friday(5)};
Num(monday) = 1

Pred(monday) = error!

Last(wednesday) = friday

- note: extensibility is not supported;

REAL : a value is denoted either in the ASN.1:1990 form “{314,10,-2}”
(without the identifiers mantissa, base and exponent introduced
by ASN.1:1994), or in decimal form1 “3.14”;
- the particular values +∞ et −∞ (not recommended) are denoted
PLUS INFINITY and MINUS INFINITY;
- {m, b, e} = m*Power(b,e);
- operators: =, /=, >, <, >=, <=, Float, +, -, *, /, - (unary), Power,
Float, Fix, Exp;
- there exists no operator for changing only the mantissa, the base
or the exponent;
- constraining this type is recommended to make automatic test
generation easier;

BIT STRING : this type is equivalent to the new type bit string of [Z.105]
based on the generator String (with an index starting from 0) and
the new type Bit;
- operators: =, /=; not, and, or, xor, => (bit-based logical opera-
tors); Length, MkString, //, First, Last, SubString; Bool, Octet String

(coercion);
- examples: Rights ::= BIT STRING {read(0), write(1)};
myRights Rights ::= {read, write}; MkString(1) = ’1’B

myRights(0) = 1 -- equal ’1’B // ’01’B = ’101’B

myRights(0) := 0; -- changed Bool(’1’B) = TRUE

myRights(user read) := 0;

- all identifiers (beginning with a lower-case letter) appearing in
definitions of type INTEGER and BIT STRING must be distinct within
the same System, Block, Process, Procedure or Service;

1 This form will probably be added soon in the ASN.1 standard (see on

page 143).

B - Combined use of ASN.1 and SDL 511

- tip: use a size constraint to make automatic test generation eas-
ier;

OCTET STRING : this type is equivalent to the new type octet string of
[Z.105] based on the generator String (with an index starting from
0) and the new type octet;
- operators: =, /=, Length, MkString, //, SubString, First, Last, Bit

String, Octet String;
- tips: use a size constraint to make automatic test generation
easier; use preferably a character string type whenever one of them
is appropriate;

OBJECT IDENTIFIER : this type is equivalent to the new type Ob-

ject identifier of [Z.105] based on the generator String (with an in-
dex starting from 1) and the new type Object element = INTEGER

(0..MAX);
- for every identifier there must be an associated synonym of the
form “Synonym identifier Object element = number;”
- the standardized identifiers (in colorboxyellowyellow in Fig-
ure 10.4 on page 161) should be defined in a specific package since
they are not part of the Predefined package in [Z.105];
- operators: =, /=, Length, MkString, //, SubString;

SEQUENCE, SET : from SDL viewpoint, these two types are equivalent to
the constructor struct (but are encoded differently with the BER
for instance);
- operators: =, /=, Extract, Present, Modify;
- examples: Wife ::= SET { name PrintableString,

firstname PrintableString OPTIONAL,

age INTEGER DEFAULT 20 };
wife Wife ::= {name ”Smith”}; firstnamePresent(wife) = FALSE

wife!firstname = error! nameModify(wife, ”Green”)

nameExtract(wife) = ”Smith”

- when defining a value, if there is an ambiguity on the type, the
value must be prefixed by the notation <<type T>>;
- if the (. .) notation of ACT ONE is used, the fields of the value
of type SEQUENCE must be defined in the alphabetical order; it is
therefore recommended to put the values in curly brackets as in
ASN.1;
- note: extensibility is not supported;

512 ASN.1 – Communication between Heterogeneous Systems

SEQUENCE OF : is equivalent to the generator String of ACT ONE (with
an index starting at 1);
- operators: =, /=, Length, MkString, //, SubString, First, Last;
- examples: myPariTierce SEQUENCE (SIZE (3)) OF INTEGER ::= {5,

2, 12}; myPariTierce(2) := 7;

- tip: use a size constraint to make automatic test generation eas-
ier;

SET OF : is not equivalent to the generator Powerset of ACT ONE be-
cause the same value may appear several times in the multi-set; it
is equivalent to the new generator Bag of [Z.105];
- operators: =, /=, > (strict superset), >=, <, <=, and (intersec-
tion), or (union), in, Length, MakeBag, Incl (element insertion), Decl,
Take;
- examples for the type SEQUENCE OF INTEGER:
{1, 2} = {2, 1} 7 in {4, 7} = TRUE

{3, 3} /= {3} Incl(5, {2, 3}) = {5, 2, 3}
{3, 3} > {3} Take({1, 2, 3}) = 1

{1, 1} and {4, 1} = {1} Take({ }) = error!

- tip: use a size constraint to make automatic test generation eas-
ier;

CHOICE : for every CHOICE type there is a newtype in SDL that includes
the same operators as the struct constructor, as well as a Make con-
structor for every alternative of the CHOICE;
- operators: =, /=, Make, !present, Present, Extract, Modify;
- examples: Afters ::= CHOICE {cheese IA5String,

dessert IA5String};
mine Afters ::= dessert:”profiteroles”;

dessertMake(”profiteroles”) = dessert:”profiteroles”

dessertExtract(mine) = ”profiteroles”

dessertPresent(mine) = TRUE

mine!present = dessert

mine := cheeseModify(mine, ”camembert”);

- if there is an ambiguity on the value definition, we write <<type

Afters>>dessert:”sabayon”;
- tips: writing a CHOICE type is easier than the equivalent in ACT
ONE ; it is recommended to test the alternative retained with the
!present operator before using it;

B - Combined use of ASN.1 and SDL 513

- notes: extensibility is not supported; the ASN.1 selection opera-
tor “<” is supported;

ANY : though no longer present in the [ISO8824-1] standard, this old
ASN.1:1990 type remains in the [Z.105] recommendation, which
does not include the notions of information object class and open
type;
- this type must be used only for specifying signals still under con-
struction or implementation parameters; in both cases, abstract
values for this type cannot be defined because no value notation is
provided by [Z.105]; a system may receive values of type ANY from
the environment but cannot modify them;
- tip: use a CHOICE type instead, which will collect the different
possible types [Z.105, Appendix 2, clause 4];
- note: this type with an infinite number of possible values is not
appropriate for automatic test generation;

character string types : these types are equivalent to syntypes of the
type CharString in SDL;
- the UTF8String type is not taken over by [Z.105] since it is defined
in an amendment to the ASN.1:1994 standard;
- character strings can be denoted in quotes or double quotes; a
string that contains a single character which is an SDL operator
(”*”) is denoted in quotes (’*’) to prevent ambiguities;
- operators: =, /=; <, <=, >, >= (lexical order); Length, MkString,
SubString, First, Last, Num;
- tip: use a size constraint to make automatic test generation eas-
ier;

EXTERNAL : all the operators of SEQUENCE type can be used;

subtyping : it is recommended to apply a subtype constraint each time
it is possible to make automatic test generation easier;
- the value range symbol “..” can be replaced by “:” (if there is
an ambiguity because one of the boundaries is a CHOICE value, it
must be nested in round brackets); the union symbol “—” can be
replaced by “,”;
- note: extensibility of subtype constraints is not supported.

514 ASN.1 – Communication between Heterogeneous Systems

Abbreviations

3GPP Third Generation Partnership Project

ACSE Association Control Service Element [ISO8650-1]

AFNOR Association Française de NORmalisation

ANSI American National Standards Institute

APDU Application Protocol Data Unit

ASCII American Standard Code for Information Interchange

ASHRAE American Society of Heating, Refrigerating and Air-
conditioning Engineers

ASN.1 Abstract Syntax Notation One [ISO8824-1,
ISO8824-2, ISO8824-3, ISO8824-4]

ATM Asynchronous Transfer Mode

ATN Aeronautical Telecommunication Network

BACnet Building Automation and Control networks [Ash95]

BER Basic Encoding Rules [ISO8825-1]

BMP Basic Multilingual Plane

BNF Backus-Naur Form

BSI British Standards Institute

CAPTAIN Character And Pattern Telephone Access Information
Network System

CCITT Consultative Committee on International Telephony
and Telegraphy

CCR Commitment, Concurrency, and Recovery
[ISO9805-1]

516 ASN.1 – Communication between Heterogeneous Systems

CEN European Committee for Standardization

CEPT Conference of European Postal and Telecommunica-
tions Administrations

CER Canonical Encoding Rules [ISO8825-1]

CMIP Common Management Information Protocol
[ISO9596-1]

CORBA Common Object Request Broker Architecture

DER Distinguished Encoding Rules [ISO8825-1]

DIN Deutsches Institut fÆr Normung

DIS Draft International Standard (ISO)

DNIC Data Network Identification Code

DP Draft Proposal (ISO)

DTAM Document Transfer And Manipulation [T.433]

EBCDIC Extended Binary Coded Decimal Interchange Code

ECMA European Computer Manufacturers Association

EDI Electronic Data Interchange

EDIFACT Electronic Data Interchange for Finance, Administra-
tion, Commerce, and Transport [ISO9735]

ETSI European Telecommunications Standards Institute

FPDAM Final Proposed Draft AMendment

FTAM File Transfer, Access, and Management [ISO8571-4]

GDMO Guidelines for the Definition of Managed Objects
[ISO10165-4]

GSM Global System for Mobile communications

HTML HyperText Markup Language

IA5 International Alphabet number 5

ICD International Code Designator [ISO6523]

IDL Interface Definition Language

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

B - Abbreviations 517

INAP Intelligent Network Application Protocol

INRIA Institut National de Recherche en Informatique et Au-
tomatique (French National Institute for Research in
Computer Science and Control)

IS International Standard (ISO)

ISDN Integrated Services Digital Network

ISUP ISDN User Part of CCITT Signalling System No. 7

ISO International organization for standardization

ISP International Standardized Profile

ITU International Telecommunications Union

ITU-T International Telecommunications Union - Telecom-
munication standardization sector

JIDM Joint Inter-Domain Management

JISC Japanese Industrial Standards Committee

JTC Joint Technical Committee (ISO/IEC)

LWER LightWeight Encoding Rules

MAP Mobile Application Part

MBER Minimum Bit Encoding Rules

MHS Message Handling Systems (‘e-mail’) [X.400]

MIT Massachusetts Institute of Technology

MMI Man-Machine Interface

MMS Manufacturing Message Specification

MSC Message Sequence Chart

NAPLPS North American Presentation Level Protocol Syntax

NB National Body (ISO)

NCA Network Computing Architecture

NCBI National Center for Biotechnology Information

NDR Network Data Representation

NEMA National Electrical Manufacturers Association

NFS Network File System

518 ASN.1 – Communication between Heterogeneous Systems

NIDL Network Interface Description Language

NIS Network Information Service (‘yellow pages’)

NMF Network Management Forum

NR Numerical Representation

NTCIP National Transportation Communications for Intelli-
gent transportation systems Protocol

ODA Office Document Architecture

ODIF Office Document Interchange Format

ODMA Open Distributed Management Architecture

ODP Open Distributed Processing

OER Octet Encoding Rules

OID Object IDentifier

OMG Object Management Group

OSI Open Systems Interconnection

PDAM Proposed Draft AMendment

PDU Protocol Data Unit

PDV Protocol Data Value

PER Packed Encoding Rules [ISO8825-2]

PICS Protocol Implementation Conformance Statement

PKCS Public Key Cryptography Standards

PPDU Presentation Protocol Data Unit

PPDV Presentation Protocol Data Value

PTT Post, Telephone and Telegraph administration

RFC Request For Comments

RFID Radio-Frequency IDentification

ROSE Remote Operations Service Element [ISO9072-2]

RPC Remote Procedure Call

RPOA Registered Private Operating Authorities

RTSE Reliable Transfer Service Element [ISO9066-2]

B - Abbreviations 519

SC SubCommittee (ISO)

SCCP Signalling Connection Control Part

SDL Specification and Description Language [Z.100]

SER Signalling specific Encoding Rules

SET Secured Electronic Transaction

SG Study Group (ITU-T)

SGML Standard Generalized Markup Language

SNMP Simple Network Management Protocol

STMP Simple Transportation Management Protocol

TC Technical Committee (ISO)

TCP/IP Transmission Control Protocol/Internet Protocol

TDED Trade Data Elements Directory

TLV Type-Length-Value or Tag-Lenth-Value

TTCN Tree and Tabular Combined Notation [ISO9646-3]

UCS Universal multiple-octet coded Character Set
([ISO10646-1], [Uni96])

UCS-2 Universal Character Set coded in 2 octets

UCS-4 Universal Character Set coded in 4 octets

UMTS Universal Mobile Telecommunications Service

UTC Universal Time Coordinated

UTF-8 UCS Transformation Format, 8-bit form

VLSI Very Large Scale Integration

WAIS Wide Area Information Server

WAP Wireless Application Protocol

WG Working Group (ISO)

WP Working Party (ITU-T)

XDR eXternal Data Representation

XER XML Encoded Rules

XML eXtensible Markup Language

520 ASN.1 – Communication between Heterogeneous Systems

XNS Xerox Network Services

Bibliography

[Ash95] ASHRAE (American Society of Heating,
Refrigerating and Air-conditioning Engi-
neers). – BACnet: A Data Communication Pro-
tocol for Building Automation and Control Net-
works. – Standard 135-1995, 1995. ISSN: 1041-2336,
http://www.ashrae.org/BOOK/bookshop.htm. 453, 513

[ASU86] Aho (A.), Sethi (R.) and Ullman (J.). – Compilers:
Principles, Techniques, and Tools. – Addison-Wesley, 1986.
http://cseng.awl.com/bookdetail.qry?ISBN=0-201-10088-6&
ptype=0. 13, 98, 100, 108, 131, 295, 374, 464, 467

[Bel67] Bell (M.). – Visible Speech: the Science of Universal
Alphabetics; or Self-Interpreting Physiological letters, for
the Writing of all Languages in one Alphabet. – N. Trübner
& Co, 1867. 3

[BG94] Baumgarten (B.) and Giessler (A.). – OSI
Conformance Testing Methodology and TTCN. –
North-Holland, Elsevier, 1994. ISBN: 0-444-89712-7,
http://www.elsevier.nl/inca/publications/store/5/2/4/7/0/6/.
478, 480

[Bla91] Black (U.). – OSI. A model for Computer Com-
munications Standards. – Prentice-Hall, 1991. ISBN:
0-13-637133-7. 20

[Bla96] Blackwell (T.). – Fast Decoding of Tagged
Message Formats. In: IEEE INFOCOM, Con-
ference on Computer Communications, ed. by
IEEE Computer Society Press, pp. 224–231. –
http://www.eecs.harvard.edu/∼tlb/Infocom96.ps. 470

http://www.ashrae.org/BOOK/bookshop.htm
http://cseng.awl.com/bookdetail.qry?ISBN=0-201-10088-6&
http://cseng.awl.com/bookdetail.qry?ISBN=0-201-10088-6&ptype=0
ptype=0
http://cseng.awl.com/bookdetail.qry?ISBN=0-201-10088-6&ptype=0
http://www.elsevier.nl/inca/publications/store/5/2/4/7/0/6/
http://www.eecs.harvard.edu/
tlb/Infocom96.ps
http://www.eecs.harvard.edu/~tlb/Infocom96.ps

522 BIBLIOGRAPHY

[Bra98] Bradley (N.). – The XML Companion. – Addison-
Wesley, 1998. 492

[Bro76] Brooks (J.). – Telephone: the First Hundred Years. The
Wondrous Invention that Changed a World and Spawned
a Corporate Giant. – Harper & Row, 1976. ISBN: 0-06-
010540-2. 5

[BS92] Bever (M.) and Schäffer (U.). – Cod-
ing Rules for High Speed Networks. In: IFIP
Conference on Upper Layer Protocol, Architec-
tures and Applications, ed. by Neufeld (G.) and
Plattner (B.), Elsevier Science Publishers B.V. –
http://www.eecs.harvard.edu/cgi-bin/selectrefs.pl?KEYS==
BEVER92. 452

[BS93] Bilgic (M.) and Sarikaya (B.). – Performance Compar-
ison of ASN.1 Encoders/Decoders Using FTAM. Computer
Communications, vol. 16, no. 4, April 1993, pp. 229–240. –
http://www.eecs.harvard.edu/cgi-bin/selectrefs.pl?KEYS==
BILGIC93. 471

[Cha92] Chatras (B.). – Méthode de spécification des pro-
tocoles de signalisation en ASN.1. – Internal Report
DE/CER/SSR/1359/BC, France Télécom R&D, March
1992. Only in French. 455

[Cha96] Chadwick (D.). – Understanding OSI: The Direc-
tory. – Chapman and Hall, 1996. ISBN: 1-85032-281-3,
http://www.salford.ac.uk/its024/Version.Web/Contents.htm.
84, 328, 329

[Cha97a] Chahuneau (F.). – The Unicode Standard. A global So-
lution to Localization Problems in Electronic Documents.
Document numérique, vol. 1, no. 4, December 1997, pp.
385–401. 183

[Cha97b] Chatras (B.). – Spécification des règles de codage
spécifiques pour la signalisation (SER). – Internal Report
NT/DAC/SSR/12, France Télécom R&D, July 1997. Only
in French. 455

http://www.eecs.harvard.edu/cgi-bin/selectrefs.pl?KEYS==
http://www.eecs.harvard.edu/cgi-bin/selectrefs.pl?KEYS=BEVER92
BEVER92
http://www.eecs.harvard.edu/cgi-bin/selectrefs.pl?KEYS=BEVER92
http://www.eecs.harvard.edu/cgi-bin/selectrefs.pl?KEYS==
http://www.eecs.harvard.edu/cgi-bin/selectrefs.pl?KEYS=BILGIC93
BILGIC93
http://www.eecs.harvard.edu/cgi-bin/selectrefs.pl?KEYS=BILGIC93
http://www.salford.ac.uk/its024/Version.Web/Contents.htm

BIBLIOGRAPHY 523

[Coh81] Cohen (D.). – On Holy Wars and a Plea for Peace. IEEE
Computer Magazine, October 1981, pp. 48–54. 8

[Cor91] Corbin (J. R.). – The Art of Distributed Applica-
tions: programming techniques for remote procedure calls. –
Springer-Verlag, 1991. ISBN: 0-387-97247-1. 486

[DHV92] Dabbous (W.), Huitema (C.), Vidaller Siso
(L.), Joaquin (S.) and Berrocal (J.). – Applica-
bility of the Session and the Presentation Layers for
the Support of High Speed Applications. – Internal
Report 144, INRIA Sophia Antipolis, October 1992.
ftp://ftp.inria.fr/INRIA/publication/RT/RT-0144.ps.gz.
452, 453, 487

[ETSI56] ETSI - Signalling Protocols and Switching (SPS) – Guide
for the Use of Second Edition of TTCN (Revised Ver-
sion). – Draft Guide DEG/MTS-56, October 1998, ed.
0.0.2. 480, 489

[ETSI60] ETSI - Signalling Protocols and Switching (SPS) –
Guidelines for Using Abstract Syntax Notation One
(ASN.1) in Telecommunication Application Proto-
cols. – Technical Report ETR 60, September 1995,
2nd ed. http://webapp.etsi.org/Publications/home.asp?
wki id=2115. 300

[ETSI101] ETSI - Methods for Testing And Specification (MTS) –
TTCN Interim Version Including ASN.1 1994 Support
[ISO9646-3] (Second Edition Mock-Up for JTC 1/SC 21
Review). – Technical Report TR 101 101, August 1998,
ed. 1.1.1. http://webapp.etsi.org/Publications/home.asp?
wki id=4893. 480

[ETSI114] ETSI - Methods for Testing And Specification
(MTS) – Analysis of the use of ASN.1 94 with
TTCN and SDL in ETSI deliverables. – Tech-
nical Report ETR 101 114, November 1997.
http://webapp.etsi.org/Publications/home.asp?wki id=
5377. 226, 475, 478

ftp://ftp.inria.fr/INRIA/publication/RT/RT-0144.ps.gz
http://webapp.etsi.org/Publications/home.asp?
http://webapp.etsi.org/Publications/home.asp?wki_id=2115
wki_id=2115
http://webapp.etsi.org/Publications/home.asp?wki_id=2115
http://webapp.etsi.org/Publications/home.asp?
http://webapp.etsi.org/Publications/home.asp?wki_id=4893
wki_id=4893
http://webapp.etsi.org/Publications/home.asp?wki_id=4893
http://webapp.etsi.org/Publications/home.asp?wki_id=
http://webapp.etsi.org/Publications/home.asp?wki_id=5377
5377
http://webapp.etsi.org/Publications/home.asp?wki_id=5377

524 BIBLIOGRAPHY

[ETSI141] ETSI - Methods for Testing And Specification (MTS) –
Protocol and Profile Conformance Testing Specifications:
The Tree and Tabular Combined Notation (TTCN)
Style Guide. – Technical Report ETR 141, Oc-
tober 1994. http://webapp.etsi.org/Publications/home.asp?
wki id=2752. 480

[ETSI295] ETSI - Methods for Testing And Specification (MTS) –
Rules for the Transformation of ASN.1 Definitions Us-
ing X.681, X.682 and X.683 to Equivalent X.680 Con-
struct. – Technical Report TR 101 295, September 1998,
ed. 1.1.1. http://webapp.etsi.org/Publications/home.asp?
wki id=5378. 77, 475, 478, 484

[ETSI298] ETSI - Signalling Protocols and Switching
(SPS) – Specification of protocols and services;
Handbook for SDL, ASN.1 and MSC Develop-
ment. – Technical Report ETR 298, September
1996. http://webapp.etsi.org/Publications/home.asp?
wki id=3206. 475

[ETSI383] ETSI - Methods for Testing And Specification (MTS) –
Use of SDL in European Telecommunication Standards;
Guidelines for facilitating validation and the development
of conformance tests. – Guide EG 201 383, October 1998,
ed. 1.1.1. http://webapp.etsi.org/Publications/home.asp?
wki id=5781. 475

[ETSI414] ETSI - Signalling Protocols and Switching (SPS) – Use of
SDL in European Telecommunication Standards; Rules for
testability and facilitating validation. – European Telecom-
munication Standard ETS 300 414, December 1995.
http://webapp.etsi.org/Publications/home.asp?wki id=310.
475

[ETSI680] ETSI - Methods for Testing And Specification (MTS) –
A Harmonised Integration of ASN.1, TTCN and
SDL. – Technical Report TR 101 680, May 1999,
ed. 1.1.1. http://webapp.etsi.org/Publications/home.asp?
wki id=5873. 478

http://webapp.etsi.org/Publications/home.asp?
http://webapp.etsi.org/Publications/home.asp?wki_id=2752
wki_id=2752
http://webapp.etsi.org/Publications/home.asp?wki_id=2752
http://webapp.etsi.org/Publications/home.asp?
http://webapp.etsi.org/Publications/home.asp?wki_id=5378
wki_id=5378
http://webapp.etsi.org/Publications/home.asp?wki_id=5378
http://webapp.etsi.org/Publications/home.asp?
http://webapp.etsi.org/Publications/home.asp?wki_id=3206
wki_id=3206
http://webapp.etsi.org/Publications/home.asp?wki_id=3206
http://webapp.etsi.org/Publications/home.asp?
http://webapp.etsi.org/Publications/home.asp?wki_id=5781
wki_id=5781
http://webapp.etsi.org/Publications/home.asp?wki_id=5781
http://webapp.etsi.org/Publications/home.asp?wki_id=310
http://webapp.etsi.org/Publications/home.asp?
http://webapp.etsi.org/Publications/home.asp?wki_id=5873
wki_id=5873
http://webapp.etsi.org/Publications/home.asp?wki_id=5873

BIBLIOGRAPHY 525

[FDD96] Fouquart (P.), Dubuisson (O.) and Duwez (F.). –
Une analyse syntaxique d’ASN.1:1994. – Internal Report
RP/LAA/EIA/83, France Télécom R&D, March 1996.
Only in French. 468

[Gen96] Genilloud (G.). – Towards a Distributed Ar-
chitecture for Systems Management. – PhD The-
sis, École Polytechnique Fédérale de Lausanne,
1996. http://icawww.epfl.ch/genilloud/Publications/
FullThesis.pdf.gz. 489

[HC92] Huitema (C.) and Chave (G.). – Measuring the Perfor-
mances of an ASN.1 Compiler. In: IFIP Conference on
Upper Layer Protocols, Architectures and Applications, ed.
by Neufeld (G.) and Plattner (B.), Elsevier Science Pub-
lishers B.V., pp. 105–118. 487

[HD98] Hétault (P.-M.) and Dubuisson (O.). – Comparaison
syntaxique de deux spécifications formelles ASN.1. – Inter-
nal Report, France Télécom R&D, August 1998. Only in
French. 469

[Heb95] Hebrawai (B.). – GDMO. Object Modelling & Definition
for Network Management. – Technology Appraisals, 1995.
ISBN: 1-871802-30X. 482

[Hor96] Horrocks (J.). – European Guide to Telecommunications
Standards. – Horrocks Technology, 1996. ISBN: 1-900015-
06-4 & 1-900015-05-6. 57, 59

[Hos93a] Hoschka (P.). – Towards Tailoring Protocols to Applica-
tion Specific Requirements. In: IEEE INFOCOM, Con-
ference on Computer Communications, San Francisco, pp.
647–653. – http://www.inria.fr/rodeo/personnel/hoschka/
93infocom.paper.ps.gz, http://www.inria.fr/rodeo/
personnel/hoschka/93infocom.slides.ps.gz. 470

[Hos93b] Hoschka (P.). – Use of ASN.1 for Remote Pro-
cedure Call Interfaces (slides). In: Interop Europe,
Paris. – http://www.inria.fr/rodeo/personnel/hoschka/
93interop.slides.ps.gz. 487

http://icawww.epfl.ch/genilloud/Publications/
http://icawww.epfl.ch/genilloud/Publications/FullThesis.pdf.gz
FullThesis.pdf.gz
http://icawww.epfl.ch/genilloud/Publications/FullThesis.pdf.gz
http://www.inria.fr/rodeo/personnel/hoschka/
http://www.inria.fr/rodeo/personnel/hoschka/93infocom.paper.ps.gz
93infocom.paper.ps.gz
http://www.inria.fr/rodeo/personnel/hoschka/93infocom.paper.ps.gz
http://www.inria.fr/rodeo/
http://www.inria.fr/rodeo/personnel/hoschka/93infocom.slides.ps.gz
personnel/hoschka/93infocom.slides.ps.gz
http://www.inria.fr/rodeo/personnel/hoschka/93infocom.slides.ps.gz
http://www.inria.fr/rodeo/personnel/hoschka/
http://www.inria.fr/rodeo/personnel/hoschka/93interop.slides.ps.gz
93interop.slides.ps.gz
http://www.inria.fr/rodeo/personnel/hoschka/93interop.slides.ps.gz

526 BIBLIOGRAPHY

[Hos96] Hoschka (P.). – Automatic Performance Optimi-
sation by Heuristic Analysis of a Formal Specifica-
tion. In: Formal Description Techniques IX, Kaiser-
slautern, ed. by Gotzheim (R.) and Bredereke (J.), pp.
77–92. – http://www.inria.fr/rodeo/personnel/hoschka/
96FORTE.paper.ps.gz. 470

[Hos97] Hoschka (P.). – Compact and Efficient Pre-
sentation Conversion Routines. – Internal Report
RR 3291, INRIA Sophia Antipolis, October 1997.
ftp://ftp.inria.fr/INRIA/publication/RR/RR-3291.ps.gz. 470

[HSO94] Hart (K. W.), Searls (D. B.) and Overton (G.). –
SORTEZ: a Relational Translator for NBCI’s ASN.1
Database. CABIOS, vol. 10, no. 4, 1994, pp. 369–378. 470

[HTN] Harumoto (K.), Tsukamoto (M.) and Nishio (S.). –
Design and Implementation of the Compiler for an ASN.1
Database on OODBMS. – Department of Information Sys-
tems Engineering, Osaka University, Japon. 470

[Hui90] Huitema (C.). – Definition of the Flat Tree Light Weight
Syntax (FTLWS). – Internal Report, INRIA Sophia An-
tipolis, July 1990. 452

[ISO646] Information Technology - ISO 7-bit coded character set
for information interchange. – International Standard
ISO/IEC 646:1991. http://www.iso.ch/cate/d4777.html.
172, 176, 193, 195, 442

[ISO2022] Information technology – Character code structure and ex-
tension techniques. – International Standard ISO/IEC
2022:1994. http://www.iso.ch/cate/d22747.html. 177, 182,
197, 406

[ISO2375] Data processing – Procedure for registration of escape
sequences. – International Standard ISO 2375:1985.
http://www.iso.ch/cate/d7217.html. 180, 182, 406

[ISO3166-1] Codes for the representation of names of coun-
tries and their subdivisions - Part 1: Coun-
try codes. – International Standard ISO/IEC

http://www.inria.fr/rodeo/personnel/hoschka/
http://www.inria.fr/rodeo/personnel/hoschka/96FORTE.paper.ps.gz
96FORTE.paper.ps.gz
http://www.inria.fr/rodeo/personnel/hoschka/96FORTE.paper.ps.gz
ftp://ftp.inria.fr/INRIA/publication/RR/RR-3291.ps.gz
http://www.iso.ch/cate/d4777.html
http://www.iso.ch/cate/d22747.html
http://www.iso.ch/cate/d7217.html

BIBLIOGRAPHY 527

3166-1:1997. http://www.iso.ch/cate/d24591.html,
ftp://ftp.isi.edu/in-notes/iana/assignments/country-codes.
158

[ISO6093] Information processing - Representation of numeri-
cal values in character strings for information inter-
change. – International Standard ISO/IEC 6093:1985.
http://www.iso.ch/cate/d12285.html. 142, 400, 401, 420

[ISO6523] Information technology - Structure for the identi-
fication of organizations and organization parts -
Part 1: Identification of organization identification
schemes. Part 2: Registration of organization iden-
tification schemes. – Draft International Standard
ISO/IEC 6523. http://www.iso.ch/cate/d25773.html,
http://www.iso.ch/cate/d25774.html. 158, 514

[ISO6937] Information technology – Coded graphic charac-
ter set for text communication – Latin alpha-
bet. – International Standard ISO/IEC 6937:1994.
http://www.iso.ch/cate/d13465.html. 179

[ISO7372] Trade data interchange – Trade data elements di-
rectory (Endorsement of UNECE/TDED, volume
1). – International Standard ISO/IEC 7372:1993.
http://www.iso.ch/cate/d23441.html. 491, 492

[ISO7498-1] Information technology - Open Systems Interconnection -
Basic reference model: The basic model. – International
Standard ITU-T Rec. X.200 (1994) | ISO/IEC 7498-1:1994.
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x200.html.
18

[ISO7498-3] Data networks and open system communication OSI
networking and system aspects - Naming, Address-
ing and Registration. – International Standard
ITU-T Rec. X.650 (1996) | ISO/IEC 7498-3:1997.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x650.html.
154

[ISO8571-4] Information processing systems - Open Systems Intercon-
nection - File Transfer, Access and Management - Part

http://www.iso.ch/cate/d24591.html
ftp://ftp.isi.edu/in-notes/iana/assignments/country-codes
http://www.iso.ch/cate/d12285.html
http://www.iso.ch/cate/d25773.html
http://www.iso.ch/cate/d25774.html
http://www.iso.ch/cate/d13465.html
http://www.iso.ch/cate/d23441.html
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x200.html
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x650.html

528 BIBLIOGRAPHY

4: File Protocol Specification (+ Technical Corrigendum
1:1992 + Amendment 1:1992: Filestore Management +
Amendment 2:1993: Overlapped access + Amendment 3:
Service enhancement + Amendment 4:1992 + Technical
Corrigendum 1:1995). – International Standard ISO/IEC
8571-4:1988. http://www.iso.ch/cate/d15851.html. 81, 514

[ISO8601] Data elements and interchange formats - Information In-
terchange - Representation of dates and times (+ Technical
corrigendum 1:1991). – International Standard ISO/IEC
8601 (1988). http://www.iso.ch/markete/moreend.htm,
http://www.ft.uni-erlangen.de/∼mskuhn/iso-time.html,
ftp://ftp.uni-erlangen.de/pub/doc/ISO/ISO8601.ps.Z. 199,
201

[ISO8650-1] Information technology – Open Systems Interconnection –
Connection-oriented protocol for the Association Control
Service Element: Protocol specification (+ Amendment1:
Incorporation of extensibility markers). – International
Standard ITU-T Rec. X.227 (1995) | ISO/IEC 8650-1:1996.
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x227.html.
25, 77, 80, 135, 241, 299, 356, 513

[ISO8807] Information processing systems - Open Systems Inter-
connection - LOTOS - A formal description technique
based on the temporal ordering of observational be-
haviour. – International Standard ISO/IEC 8807 (1989).
http://www.iso.ch/cate/d16258.html. 475

[ISO8822] Information technology - Open Systems Interconnection
- Presentation service definition. – International Stan-
dard ITU-T Rec. X.216 (1994) | ISO/IEC 8822:1994.
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x216.html.
15, 20, 154

[ISO8823-1] Information technology - Open Systems Intercon-
nection - Connection-oriented presentation proto-
col: Protocol specification. – International Standard
ITU-T Rec. X.226 (1994) | ISO/IEC 8823-1:1994.
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x226.html.
20, 77, 80, 111, 132, 154, 244, 295, 361, 414, 452

http://www.iso.ch/cate/d15851.html
http://www.iso.ch/markete/moreend.htm
http://www.ft.uni-erlangen.de/
mskuhn/iso-time.html
http://www.ft.uni-erlangen.de/~mskuhn/iso-time.html
ftp://ftp.uni-erlangen.de/pub/doc/ISO/ISO8601.ps.Z
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x227.html
http://www.iso.ch/cate/d16258.html
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x216.html
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x226.html

BIBLIOGRAPHY 529

[ISO8824-1] Information Technology - Abstract Syntax Notation One
(ASN.1): Specification of Basic Notation. – International
Standard ITU-T Rec. X.680 (1997) | ISO/IEC 8824-1:1998.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x680.html.
69, 73, 76, 136, 185, 197, 244, 252, 475, 479, 482, 511, 513

[ISO8824-1Amd1] Information Technology - ASN.1: Specification
of Basic Notation - Amendment 1: Relative Ob-
ject Identifiers. – Amendment ITU-T Rec. X.680
(1997)/Amd.1 (1999) | ISO/IEC 8824-1:1998/Amd.1:1999.
http://www.itu.int/itudoc/itu-t/approved/x/x680amd1.html.
167, 169

[ISO8824-1Amd2] Information Technology - ASN.1: Specifica-
tion of Basic Notation - Amendment 2: ASN.1
Semantic model. – Amendment ITU-T Rec. X.680
(1997)/Amd.2 (1999) | ISO/IEC 8824-1:1998/Amd.2:1999.
http://www.itu.int/itudoc/itu-t/approved/x/x680amd2.html.
121, 197

[ISO8824-1TC1] Information Technology - ASN.1: Specification of
Basic Notation - Technical Corrigendum 1. – Tech-
nical Corrigendum ITU-T Rec. X.680 (1997)/Tech.
Corr. 1 (1999) | ISO/IEC 8824-1:1998/Cor.1:1999.
http://www.itu.int/itudoc/itu-t/approved/x/x680cor1.html.

[ISO8824-1DTC2] Information Technology - ASN.1: Specification of
Basic Notation - Draft Technical Corrigendum 2. – Draft
Technical Corrigendum ITU-T Rec. X.680 (1997)/Draft
Tech. Corr. 2 (2000) | ISO/IEC 8824-1:1998/DCor.2:2000.
71, 112, 139

[ISO8824-1DTC3] Information Technology - ASN.1: Specification of
Basic Notation - Draft Technical Corrigendum 3. – Draft
Technical Corrigendum ITU-T Rec. X.680 (1997)/Draft
Tech. Corr. 3 (2000) | ISO/IEC 8824-1:1998/DCor.3:2000.
72, 143

[ISO8824-1DTC4] Information Technology - ASN.1: Specification of
Basic Notation - Draft Technical Corrigendum 4. – Draft

http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x680.html
http://www.itu.int/itudoc/itu-t/approved/x/x680amd1.html
http://www.itu.int/itudoc/itu-t/approved/x/x680amd2.html
http://www.itu.int/itudoc/itu-t/approved/x/x680cor1.html

530 BIBLIOGRAPHY

Technical Corrigendum ITU-T Rec. X.680 (1997)/Draft
Tech. Corr. 1 (2000) | ISO/IEC 8824-1:1998/DCor.4:2000.
72, 271, 273

[ISO8824-2] Information Technology - Abstract Syntax Notation One
(ASN.1): Information Object Specification. – International
Standard ITU-T Rec. X.681 (1997) | ISO/IEC 8824-2:1998.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x681.html.
302, 311, 332, 343, 355, 359, 513

[ISO8824-2Amd1] Information Technology - ASN.1: Information
Object Specification - Amendment 1: ASN.1 Se-
mantic Model. – Amendment ITU-T Rec. X.681
(1997)/Amd.1 (1999) | ISO/IEC 8824-2:1998/Amd.1:1999.
http://www.itu.int/itudoc/itu-t/approved/x/x681amd1.html.
121

[ISO8824-2TC1] Information Technology - ASN.1: Information
Object Specification - Technical Corrigendum 1. – Tech-
nical Corrigendum ITU-T Rec. X.681 (1997)/Tech.
Corr. 1 (1999) | ISO/IEC 8824-2:1998/Cor.1:1999.
http://www.itu.int/itudoc/itu-t/approved/x/x681cor1.html.

[ISO8824-3] Information Technology - Abstract Syntax Notation One
(ASN.1): Constraint Specification. – International Stan-
dard ITU-T Rec. X.682 (1997) | ISO/IEC 8824-3:1998.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x682.html.
294, 350, 513

[ISO8824-3DTC1] Information Technology - ASN.1: Specification of
Basic Notation - Draft Technical Corrigendum 1. – Draft
Technical Corrigendum ITU-T Rec. X.682 (1997)/Draft
Tech. Corr. 1 (2000) | ISO/IEC 8824-3:1998/DCor.1:2000.
296

[ISO8824-3DTC2] Information Technology - ASN.1: Specification of
Basic Notation - Draft Technical Corrigendum 2. – Draft
Technical Corrigendum ITU-T Rec. X.682 (1997)/Draft
Tech. Corr. 2 (2000) | ISO/IEC 8824-3:1998/DCor.2:2000.
72, 283, 284

http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x681.html
http://www.itu.int/itudoc/itu-t/approved/x/x681amd1.html
http://www.itu.int/itudoc/itu-t/approved/x/x681cor1.html
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x682.html

BIBLIOGRAPHY 531

[ISO8824-4] Information Technology - Abstract Syntax Nota-
tion One (ASN.1): Parameterization of ASN.1
Specifications. – International Standard ITU-
T Rec. X.683 (1997) | ISO/IEC 8824-4:1998.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x684.html.
379, 382, 384, 385, 386, 513

[ISO8824-4Amd1] Information Technology - ASN.1: Parameteriza-
tion of ASN.1 Specifications - Amendment 1: ASN.1
Semantic Model. – Amendment ITU-T Rec. X.683
(1997)/Amd.1 (1999) | ISO/IEC 8824-4:1998/Amd.1:1999.
http://www.itu.int/itudoc/itu-t/approved/x/x683amd1.html.
121

[ISO8825-1] Information technology - ASN.1 encoding rules: Spec-
ification of Basic Encoding Rules (BER), Canon-
ical Encoding Rules (CER) and Distinguished En-
coding Rules (DER). – International Standard
ITU-T Rec. X.690 (1997) | ISO/IEC 8825-1:1998.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x690.html.
400, 406, 418, 513, 514

[ISO8825-1Amd1] Information Technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canon-
ical Encoding Rules (CER) and Distinguished En-
coding Rules (DER) - Amendment 1: Relative Ob-
ject Identifiers. – Amendment ITU-T Rec. X.690
(1997)/Amd.1 (1999) | ISO/IEC 8825-1:1998/Amd.1:1999.
http://www.itu.int/itudoc/itu-t/approved/x/x690amd1.html.

[ISO8825-1TC1] Information Technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canoni-
cal Encoding Rules (CER) and Distinguished Encoding
Rules (DER) - Technical Corrigendum 1. – Tech-
nical Corrigendum ITU-T Rec. X.690 (1997)/Tech.
Corr. 1 (1999) | ISO/IEC 8825-1:1998/Cor.1:1999.
http://www.itu.int/itudoc/itu-t/approved/x/x690cor1.html.

http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x684.html
http://www.itu.int/itudoc/itu-t/approved/x/x683amd1.html
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x690.html
http://www.itu.int/itudoc/itu-t/approved/x/x690amd1.html
http://www.itu.int/itudoc/itu-t/approved/x/x690cor1.html

532 BIBLIOGRAPHY

[ISO8825-2] Information technology - ASN.1 encoding rules: Specifi-
cation of Packed Encoding Rules (PER). – International
Standard ITU-T Rec. X.691 (1997) | ISO/IEC 8825-2:1998.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x691.html.
426, 428, 429, 448, 516

[ISO8825-2Amd1] Information Technology - ASN.1 encod-
ing rules: Specification of Packed Encoding
Rules (PER) - Amendment 1: Relative Object
Identifiers. – Amendment ITU-T Rec. X.691
(1997)/Amd.1 (1999) | ISO/IEC 8825-2:1998/Amd.1:1999.
http://www.itu.int/itudoc/itu-t/approved/x/x691amd1.html.

[ISO8825-2TC1] Information Technology - ASN.1 encoding
rules: Specification of Packed Encoding Rules
(PER) - Technical Corrigendum 1. – Techni-
cal Corrigendum ITU-T Rec. X.691 (1997)/Tech.
Corr. 1 (1999) | ISO/IEC 8825-2:1998/Cor.1:1999.
http://www.itu.int/itudoc/itu-t/approved/x/x691cor1.html.

[ISO8859] Information Processing - 8-bit Single-Byte Coded
Graphic Character Sets - Part 1: Latin Alphabet
No. 1, ISO 8859-1:1987. Part 2: Latin Alphabet No.
2, ISO 8859-2:1987. Part 3: Latin Alphabet No. 3,
ISO 8859-3:1988. Part 4: Latin Alphabet No. 4, ISO
8859-4:1988. Part 5: Latin/Cyrillic Alphabet, ISO
8859-5:1988. Part 6: Latin/Arabic Alphabet, ISO
8859-6:1987. Part 7: Latin/Greek Alphabet, ISO
8859-7:1987. Part 8: Latin/Hebrew Alphabet, ISO
8859-8:1988. Part 9: Latin Alphabet No. 5, ISO 8859-
9:1990. – International Standards ISO 8859:1990.
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=
refnumber&KEYWORDS=8859,
http://park.kiev.ua/multiling/ml-docs/iso-8859.html,
http://czyborra.com/charsets/iso8859.html. 172, 185

[ISO9066-2] Open System Interconnection - Connection-mode

http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x691.html
http://www.itu.int/itudoc/itu-t/approved/x/x691amd1.html
http://www.itu.int/itudoc/itu-t/approved/x/x691cor1.html
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=8859
refnumber&KEYWORDS=8859
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=8859
http://park.kiev.ua/multiling/ml-docs/iso-8859.html
http://czyborra.com/charsets/iso8859.html

BIBLIOGRAPHY 533

protocol specifications - Reliable transfer: Proto-
col specification. – International Standard ITU-
T Rec. X.228 (1988) | ISO/IEC 9066-2:1989.
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x228.html.
25, 80, 516

[ISO9072-2] Data networks and open system communication - Open
System Interconnection - Service definitions - Remote
operations: Protocol specification. – International Stan-
dard ITU-T Rec. X.229 (1988) | ISO/IEC 9072-2:1989.
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x229.html.
25, 77, 154, 242, 280, 371, 374, 516

[ISO9596-1] Information technology - Open Systems Intercon-
nection - Common Management Information Pro-
tocol: Specification. – International Standard
ITU-T Rec. X.711 (1997) | ISO/IEC 9596-1:1998.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x711.html.
90, 159, 200, 244, 280, 514

[ISO9646-3] Information technology - Open Systems Interconnection
- Conformance testing methodology and framework -
Part 3: The Tree and Tabular Combined Notation
(TTCN). – International Standard ISO/IEC 9646-3:1998.
http://www.iso.ch/cate/d30621.html. 478, 517, 521

[ISO9735] Electronic data interchange for administration, commerce
and transport (EDIFACT) – Application level syntax
rules (Parts 1 to 9). – Draft International Stan-
dard ISO/IEC 9735. http://www.iso.ch/cate/d28131.html,
http://www.unece.org/trade/untdid/welcome.htm. 490, 514

[ISO9805-1] Information technology - Open Systems Interconnection -
Protocol for the commitment, concurrency and recovery
service element: Protocol specification. – International
Standard ITU-T Rec. X.852 (93) | ISO/IEC 9805-1:1994.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x852.html.
26, 80, 513

http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x228.html
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x229.html
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x711.html
http://www.iso.ch/cate/d30621.html
http://www.iso.ch/cate/d28131.html
http://www.unece.org/trade/untdid/welcome.htm
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x852.html

534 BIBLIOGRAPHY

[ISO9834-1] Information Technology - OSI - Procedures for the
operation of OSI Registration Authorities: Gen-
eral Procedures. – International Standard ITU-
T Rec. X.660 (1998) | ISO/IEC 9834-1:1998.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x660.html.
67, 68, 114, 154, 156, 157, 158, 162, 167, 198, 199, 404

[ISO9834-3] Information Technology - OSI - Procedures for the
operation of OSI Registration Authorities: Regis-
tration of values of RH-name-tree components for
joint ISO and ITU-T use. – International Standard
ITU-T Rec. X.662 (1997) | ISO/IEC 9834-3:1997.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x662.html.
159

[ISO10165-4] Information Technology - Open Systems Interconnection -
Structure of management information - Part 4: Guidelines
for the Definition of Managed Objects (+ Technical Cor-
rigendum 1:1996 + Amendments 1, 3 and 4). – Interna-
tional Standard ITU-T Rec. X.722 (1992) | ISO/IEC 10165-
4:1992. http://www.iso.ch/cate/d18174.html. 90, 155, 159,
482, 484, 514

[ISO10646-1] Information Technology - Universal Multiple-Octet
Coded Character Set (UCS): Architecture and Basic Mul-
tilingual Plane. – International Standard ISO/IEC
10646-1:1993. http://www.iso.ch/cate/d18741.html,
ftp://ftp.unicode.org/Public/, http://www.unicode.org/,
UNIDATA/UnicodeData-Latest.txt,
http://www.dkuug.dk/JTC1/sc2/WG2/prot/,
http://www.ifcss.org/ftp-pub/software/info/cjk-codes/
Unicode.html (see also [Uni96]). 65, 172, 175, 183, 184,
185, 186, 187, 188, 189, 190, 191, 192, 194, 196, 197, 273,
274, 306, 406, 442, 517, 537

[ISO10646-1Amd2] Information Technology - Universal Multiple-Octet
Coded Character Set (UCS): Architecture and Basic Mul-
tilingual Plane. Amendment 2: UCS Transformation For-
mat 8 (UTF-8). – International Standard ISO/IEC 10646-
1:1993/Amd.2:1996. http://www.iso.ch/cate/d18741.html.
188, 190, 194, 406

http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x660.html
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x662.html
http://www.iso.ch/cate/d18174.html
http://www.iso.ch/cate/d18741.html
ftp://ftp.unicode.org/Public/
ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData-Latest.txt
http://www.unicode.org/
UNIDATA/UnicodeData-Latest.txt
ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData-Latest.txt
http://www.dkuug.dk/JTC1/sc2/WG2/prot/
http://www.ifcss.org/ftp-pub/software/info/cjk-codes/
http://www.ifcss.org/ftp-pub/software/info/cjk-codes/Unicode.html
Unicode.html
http://www.ifcss.org/ftp-pub/software/info/cjk-codes/Unicode.html
http://www.iso.ch/cate/d18741.html

BIBLIOGRAPHY 535

[ISO11578] Information Technology Open Systems Interconnection -
Remote Procedure Call (RPC). – International Standard
ISO/IEC 11578:1996. http://www.iso.ch/cate/d2229.html.
488

[ISO13712-1] Data networks and open system communication -
Open System Interconnection - Service definitions -
Remote operations: Concepts, model and notation
(+ Technical Corrigendum 1:1995 + Amendment
1: Built-in operations). – International Standard
ITU-T Rec. X.880 (1994) | ISO/IEC 13712-1:1995.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x880.html,
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x880c1.html,
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/
x 880a1.html. 25, 80, 236, 248, 288, 295, 311, 375,
383

[ISO14750] Information Technology - Open distributed processing - In-
terface Definition Language. – International Standard ITU-
T Rec. X.920 (1997) | ISO/IEC 14750:1998. 489

[ISOReg] International Register of Coded Character Sets to be
Used with Escape Sequences. – Document ISO/IEC.
http://www.itscj.ipsj.or.jp/ISO-IR/. 172, 175, 176, 178, 181,
182, 183, 193

[KDL87] Kong (M.), Dineen (T. H.), Leach (P. J.) et al. –
Network Computer System Reference Manual. – Prentice-
Hall, 1987. ISBN: 0-13-617085-4. 488

[Lar96] Larmouth (J.). – Understanding OSI. – Interna-
tional Thomson Computer Press, 1996. ISBN: 1-850321760,
http://www.salford.ac.uk/iti/books/osi/all.html. 20, 57,
231, 242, 303, 492

[Lar99] Larmouth (J.). – ASN.1 Complete. – Morgan Kaufmann,
1999. ISBN: 0-12233-435-3, http://www.mkp.com/books
catalog/0-12233-435-3.asp, freely downloadable from
http://www.oss.com/asn1/booksintro.html. xxiii

http://www.iso.ch/cate/d2229.html
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x880.html
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x880c1.html
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x_880a1.html
x_880a1.html
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x_880a1.html
http://www.itscj.ipsj.or.jp/ISO-IR/
http://www.salford.ac.uk/iti/books/osi/all.html
http://www.mkp.com/books_catalog/0-12233-435-3.asp
http://www.oss.com/asn1/booksintro.html

536 BIBLIOGRAPHY

[LD97] Latu (G.) and Dubuisson (O.). – Deux outils synta-
xiques pour la notation ASN.1. – Internal Report, France
Télécom R&D, December 1997. Only in French. 469

[Lin93] Lin (H.-A. P.). – Estimation of the Optimal Performance
of ASN.1/BER Transfer Syntax. ACM SIGCOMM Com-
puter Communication Review, vol. 23, no. 3, 1993, pp. 45–
58. 415

[MC93] Meyers (B. C.) and Chastek (G.). – The
Use of ASN.1 and XDR for Data Representa-
tion in Real-Time Distributed Systems. – Tech-
nical Report CMU/SEI-93-TR-10, October 1993.
http://www.sei.cmu.edu/publications/documents/
93.reports/93.tr.010.html. 487

[Mit94] Mitra (N.). – An Introduction to the ASN.1 MACRO Re-
placement Notation. AT&T Technical Journal, May-June
1994, pp. 66–79. 312

[MMS79] Mitchell (J. G.), Maybury (W.) and Sweet (R.). –
Mesa Language Manual. – Technical Report CSL-79-3
(Version 5.0), April 1979. 60

[OFM96] Olsen (A.), Færgemand (O.), Møller-Pedersen
(B.), Reed (R.) and Smith (J.). – Systems
Engineering Using SDL-92. – North-Holland, El-
sevier, 1996, 3rd edition. ISBN: 0-444-89872-7,
http://www.elsevier.nl/inca/publications/store/5/2/4/7/0/7/.
475, 476

[OPR96] Otte (R.), Patrick (P.) and Roy (M.). – Un-
derstanding CORBA. – Prentice Hall PTR, 1996.
ISBN: 0-13-459884-9, http://www.prenhall.com/allbooks/
ptr 0134598849.html. 488

[PC93] Piscitello (D. M.) and Chapin (A. L.). – Open
Systems Networking, TCP/IP and OSI. – Addison-Wesley
Professional Computing Series, 1993. ISBN: 0-201-56334-7,
http://cseng.aw.com/bookdetail.qry?ISBN=0-201-56334-7&
ptype=1182. 20, 156

http://www.sei.cmu.edu/publications/documents/
http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.010.html
93.reports/93.tr.010.html
http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.010.html
http://www.elsevier.nl/inca/publications/store/5/2/4/7/0/7/
http://www.prenhall.com/allbooks/
http://www.prenhall.com/allbooks/ptr_0134598849.html
ptr_0134598849.html
http://www.prenhall.com/allbooks/ptr_0134598849.html
http://cseng.aw.com/bookdetail.qry?ISBN=0-201-56334-7&
http://cseng.aw.com/bookdetail.qry?ISBN=0-201-56334-7&ptype=1182
ptype=1182
http://cseng.aw.com/bookdetail.qry?ISBN=0-201-56334-7&ptype=1182

BIBLIOGRAPHY 537

[PR89] Partridge (C.) and Rose (M. T.). – A Comparison
of External Data Formats. pp. 233–245. – Elsevier Science
Publishers B.V. 488

[Ram98] Raman (L.). – OSI Systems and Network Management.
IEEE Communications Magazine, March 1998, pp. 46–53.
480

[RFC822] Crocker (David H.). – Standard for the Format of
ARPA Internet Text Messages. – Request For Comments
822, August 1982. http://www.faqs.org/rfcs/rfc822.html
(see also [RFC2156]). 490

[RFC1213] McCloghrie (K.) and Rose (M.). – Management In-
formation Base for Network Management of TCP/IP-based
Internets. – Request For Comments 1213, March 1991.
http://www.faqs.org/rfcs/rfc1213.html. 151

[RFC1832] Srinivasan (R.). – XDR: External Data Representation
Standard. – Request For Comments 1832, August 1995.
http://www.faqs.org/rfcs/rfc1832.html. 486

[RFC2234] Crocker (D.) and Overell (P.). – Augmented BNF for
Syntax Specifications: ABNF. – Technical Report 2234,
November 1997. http://www.faqs.org/rfcs/rfc2234.html.
490

[RFC2156] Kille (S.). – MIXER (Mime Internet X.400 En-
hanced Relay): Mapping between X.400 and RFC
822/MIME. – Technical Report 2156, January 1998.
http://www.faqs.org/rfcs/rfc2156.html. 176, 535

[RFC2279] Yergeau (F.). – UTF-8, a transformation format of ISO
10646. – Request For Comments 2279, January 1998.
http://www.faqs.org/rfcs/rfc2279.html. 191, 406

[Rin95] Rinderknecht (C.). – Parsing ASN.1:1990
with Caml Light. – Internal Re-
port 171, INRIA Sophia Antipolis, 1995.
ftp://ftp.inria.fr/INRIA/publication/RT/RT-0171.ps.gz,
http://pauillac.inria.fr/∼rinderkn. 235, 374, 468

http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc1213.html
http://www.faqs.org/rfcs/rfc1832.html
http://www.faqs.org/rfcs/rfc2234.html
http://www.faqs.org/rfcs/rfc2156.html
http://www.faqs.org/rfcs/rfc2279.html
ftp://ftp.inria.fr/INRIA/publication/RT/RT-0171.ps.gz
http://pauillac.inria.fr/~rinderkn
http://pauillac.inria.fr/~rinderkn

538 BIBLIOGRAPHY

[RSA93] RSA Laboratories. – PKCS #7: Cryptographic Mes-
sage Syntax Standard. – Technical Report, November 1993.
87

[Sch94] Schröder (R.). – SDL’92 Data Handling in Combination
With ASN.1. – Master Thesis, Humboldt-Universität zu
Berlin, March 1994, 97 p. 475

[SN93] Sample (M.) and Neufeld (G.). – Implementing
Efficient Encoders and Decoders For Network Data
Representations. In: IEEE INFOCOM, Conference
on Computer Communications, San Francisco, ed.
by IEEE Computer Society Press, pp. 1144–1153. –
http://www.eecs.harvard.edu/cgi-bin/selectrefs.pl?KEYS=
SAMPLE93. 487, 488

[Ste93] Steedman (D.). – ASN.1 The Tutorial & Reference. –
Technology Appraisals Ltd., 1993. ISBN: 1-871802-06-7,
http://www.techapps.co.uk/asn1gloss.html. 60, 235, 244,
373

[T.101] Terminals for telematic services. – Rec-
ommendation ITU-T Rec. T.101 (1994).
http://www.itu.ch/itudoc/itu-t/rec/t/t101.html. 180

[T.433] Terminals for Telematic Services - Document Trans-
fer And Manipulation (DTAM) - Services and pro-
tocols - Protocol specification (+ Amendment 1,
1995: Revisions of T.433 to support G4 colour and
file transfer). – Recommendation ITU-T Rec. T.433
(1992). http://www.itu.ch/itudoc/itu-t/rec/t/t433.html,
http://www.itu.ch/itudoc/itu-t/rec/t/t433amd1.html. 23,
514

[Tan96] Tanenbaum (A.). – Computer Networks. –
Prentice-Hall, 1996. ISBN: 0-13-349945-6,
http://www.prenhall.com/divisions/ptr/tanenbaum/. 8, 9,
20, 27

[TMF96] TeleManagement Forum, X/Open. – ASN.1/C++. Ap-
plication Programming Interface. – Report 1.0 (draft 10a),
1996. ftp://ftp.tmforum.org/nmfsets/component/cs322/

http://www.eecs.harvard.edu/cgi-bin/selectrefs.pl?KEYS=
http://www.eecs.harvard.edu/cgi-bin/selectrefs.pl?KEYS=SAMPLE93
SAMPLE93
http://www.eecs.harvard.edu/cgi-bin/selectrefs.pl?KEYS=SAMPLE93
http://www.techapps.co.uk/asn1gloss.html
http://www.itu.ch/itudoc/itu-t/rec/t/t101.html
http://www.itu.ch/itudoc/itu-t/rec/t/t433.html
http://www.itu.ch/itudoc/itu-t/rec/t/t433amd1.html
http://www.prenhall.com/divisions/ptr/tanenbaum/
ftp://ftp.tmforum.org/nmfsets/component/cs322/
ftp://ftp.tmforum.org/nmfsets/component/cs322/NMF040-1.doc

BIBLIOGRAPHY 539

NMF040-1.doc, ftp://ftp.tmforum.org/nmfsets/component/
cs322/NMF040-2.doc. 142, 294, 466, 469, 489

[TH] Taylor (G.) and Howard (A.). – A Study to Draw a
Correlation Between EDIFACT and ASN.1. – Technical
Report. Department of Trade and Industry, Information
Technology Standards Unit, Londres. 492

[Uni96] Unicode Consortium. – The Unicode
Standard, Version 2.0. – Addison-Wesley,
1996. ISBN: 0-201-48345-9, with CD-ROM,
http://cseng.aw.com/bookdetail.qry?ISBN=0-201-48345-9&
ptype=0 (see also [ISO10646-1]). 65, 183, 188, 189, 191,
194, 196, 517, 532

[W3C00] XML Schema. – W3C Standard, April 4,
2000. http://www.w3.org/TR/xmlschema-0/,
http://www.w3.org/TR/xmlschema-1/,
http://www.w3.org/TR/xmlschema-2/. See also
http://www.w3schools.com/schema/. 271, 456

[WBS90] Wu (W.), Bilgic (M.) and Sarikaya (B.). – VHDL
Modeling and Synthesis of an ASN.1 Encoder/Decoder. In:
CCVLSI Conference, Ottawa, pp. 1.5.1–1.5.5. 471

[Whi89] White (J.). – ASN.1 and ROS: The Impact of X.400 on
OSI. IEEE Journal on Selected Areas in Communications,
vol. 7, no. 7, September 1989. 60

[Wil99] Willcock (C.). – New Directions in ASN.1: Towards
a Formal Notation for Transfer Syntax. In: IWTCS Con-
ference. Testing of Communicating Systems. Methods and
Applications, ed. by Csopaki (G.), Dibuz (S.) and Tarnay
(K.), ed. by Publishers (K. A.), pp. 31–40. 457

[X.121] Data networks and open system communication
- Public data networks - Network aspects: In-
ternational numbering plan for public data net-
works. – Recommendation ITU-T Rec. X.121 (1996).
http://www.itu.ch/itudoc/itu-t/rec/x/x1-199/x121.html.
158

NMF040-1.doc
ftp://ftp.tmforum.org/nmfsets/component/cs322/NMF040-1.doc
ftp://ftp.tmforum.org/nmfsets/component/
ftp://ftp.tmforum.org/nmfsets/component/cs322/NMF040-2.doc
cs322/NMF040-2.doc
ftp://ftp.tmforum.org/nmfsets/component/cs322/NMF040-2.doc
http://cseng.aw.com/bookdetail.qry?ISBN=0-201-48345-9&
http://cseng.aw.com/bookdetail.qry?ISBN=0-201-48345-9&ptype=0
ptype=0
http://cseng.aw.com/bookdetail.qry?ISBN=0-201-48345-9&ptype=0
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3schools.com/schema/
http://www.itu.ch/itudoc/itu-t/rec/x/x1-199/x121.html

540 BIBLIOGRAPHY

[X.400] Non-telephone telecommunication services Message
handling services - Message handling system and
service overview. – International Standard ITU-T
Rec. F.400/X.400 (1996) | ISO/IEC 10021-1:1997.
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x400.html.
26, 155, 157, 159, 231, 515

[X.409] Message Handling Systems: Presentation Transfer Syn-
tax and Notation. – Recommendation ITU-T Rec. X.409
(1984). 151, 174, 176, 210, 211, 226, 241, 364, 394

[X.435] Data networks and open system communication -Message
Handling Systems: Electronic data interchange messaging
system (+ Technical corrigendum 1, 1998 + Amendment
1, 1997: Compression extension). – International Stan-
dard ITU-T Rec. X.435 (1991) | ISO/IEC 10021-9:1995.
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x435.html,
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/
x435cor1.html, http://www.itu.ch/itudoc/itu-t/rec/x/
x200-499/x435am1.html. 155, 162

[X.501] Information technology - Open Systems Interconnection
- The directory: Models. – International Standard
ITU-T Rec. X.501 (1997) | ISO/IEC 9594-2:1997.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x501.html.
243, 329, 345, 346

[X.509] Information technology - Open Systems Interconnection -
The directory: Authentication framework. – International
Standard ITU-T Rec. X.509 (1997) | ISO/IEC 9594-8:1997.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x509.html,
http://www.cs.auckland.ac.nz/∼pgut001/pubs/
x509guide.htm. 89, 145, 243, 375, 420, 422

[X.519] Information technology - Open Systems Interconnection
- The directory: Protocol specifications. – International
Standard ITU-T Rec. X.519 (1997) | ISO/IEC 9594-5:1997.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x519.html.
288

[X.520] Information technology - Open Systems Interconnection
- The directory: Selected attribute types. – International

http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x400.html
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x435.html
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x435cor1.html
x435cor1.html
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x435cor1.html
http://www.itu.ch/itudoc/itu-t/rec/x/
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x435am1.html
x200-499/x435am1.html
http://www.itu.ch/itudoc/itu-t/rec/x/x200-499/x435am1.html
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x501.html
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x509.html
http://www.cs.auckland.ac.nz/~pgut001/pubs/
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.htm
x509guide.htm
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.htm
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x519.html

BIBLIOGRAPHY 541

Standard ITU-T Rec. X.520 (1997) | ISO/IEC 9594-6:1997.
http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x520.html.
237, 342, 379

[Xer81] Xerox Corporation. – Courier. – Xerox System Inte-
gration Bulletin OPD B018112, 1981. 60

[Z.100] Programming languages - Formal description techniques
(FDT) - Specification and Description Language (SDL). –
Pre-published Recommendation ITU-T Rec. Z.100 (1999).
http://www.itu.ch/itudoc/itu-t/approved/z/z100.html.
474, 517, 539

[Z.100S1] SDL+ methodology: Use of MSC and SDL (with
ASN.1). – Supplement 1 to Recommenda-
tion [Z.100], ITU-T Rec. Z.100 Suppl. 1 (1997).
http://www.itu.ch/itudoc/itu-t/rec/z/z100sup1.html.
475

[Z.105] Programming languages - Formal description tech-
niques (FDT) - Specification and Description Language
(SDL): SDL combined with ASN.1 modules. – Pre-
published Recommendation ITU-T Rec. Z.105 (1999).
http://www.itu.ch/itudoc/itu-t/approved/z/z105.html.
475, 476, 478, 507, 508, 509, 510, 511

[Z.107] Programming languages - Formal description tech-
niques (FDT) - Specification and Description
Language (SDL): SDL with embedded ASN.1. –
Recommendation ITU-T Rec. Z.107 (1999).
http://www.itu.ch/itudoc/itu-t/rec/z/z-107.html. 475, 478

[Z.140] Methods for Testing and Specification (MTS); The Tree
and Tabular Combined Notation version 3 – TTCN-3:
Core Language. – Draft Revised ITU-T Recommendation
X.292/Z.140. 480

http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x520.html
http://www.itu.ch/itudoc/itu-t/approved/z/z100.html
http://www.itu.ch/itudoc/itu-t/rec/z/z100sup1.html
http://www.itu.ch/itudoc/itu-t/approved/z/z105.html
http://www.itu.ch/itudoc/itu-t/rec/z/z-107.html

542 BIBLIOGRAPHY

Index

The entries in italics stand for
ASN.1 grammar productions (e.g.
ActualParameter); page numbers
in brackets indicate that the cor-
responding grammar production
is only used on that page but not
defined there. The lexical tokens
(e.g. bstring) are written in sans
serif font. The ASN.1 keywords
(e.g. ABSTRACT-SYNTAX), the sym-
bols (e.g. “!”) and some identifiers
used in the ASN.1 standard (e.g.
administration) are highlighted in
teletype font.

– Symbols –
! 65, 247, 255, 292, 389
" . 44, 101
|

macro definition 368
set combination 520
subtype constraint 261

| (alternatives of a production) .99
’ . 100, 101
’B . 44, 100
’H . 44, 101
(. 114, 140, 149, 290, 336
) 114, 140, 149, 290, 336
∗ . 99
+ . 99
- . 44
-- . 44, 101
. 118, 119, 347
.. 263, 265, 270
...

BER encoding 414
combined with an exception

marker “!” 253
in ENUMERATED 136, 139
in extensible constraints . 288,

291–294
in object sets 50, 330, 332
in SEQUENCE, SET, CHOICE . . 48,

64, 67, 244–256
in value sets288, 333
in WITH COMPONENTS . . 278, 281
PER encoding 435

· · ·∗ .99
· · ·+ . 99
: 63, 239, 256, 296, 348, 385
::= . 45, 48–50, 109, 110, 113, 217,

384, 385
; 47, 104, 111, 115
< .239–240, 263, 265, 270, 367, 369
> . 367, 369
@ 50, 101, 231, 350
@. 350
[.47, 216, 325
[[. 48, 67, 223, 227, 238, 249
& . 102–104, 312
^ see INTERSECTION

. .70
ε . 99
] . see “[”
]] . see “[[”

– Numbers –
0 . 142
2000see millennium bug
3GPP . 459

544 INDEX

7-layer OSI model 18
8824 see ISO 8824
8825 see ISO 8825

– A –
@ 50, 101, 231, 350
@. 350
a . 158
ABSENT . 282
AbsoluteReference . . .101, 231, 350
ABSTRACT-SYNTAX . 66, 359–362, 390
abstract syntax 21–24, 389
ACSE . . 25, 80, 135, 241, 299, 356
ACT ONE 90, 477
ActualParameter 388
ActualParameterList 388
AdditionalElementSetSpec 289,

(294), 334
AdditionalEnumeration 139
administration 158
ALIGNED . 456
aligned (PER variant) 428
ALL115, 289, 330, 335
alphabets . 175
alternative . 99
AlternativeTypeList238
AlternativeTypeLists 237
amendment . 57
ampersandsee “&”
ANSI X.9 .89
ANTLR . 469
ANY 63, 68, 241–244, 311, 343, 347,

348, 378
BER encoding 412–413
DEFINED BY . 63, 242–244, 311,

352, 357, 372
migration to ASN.1:94/97

74–76, 346, 356
migration to ASN.1:94/97 74–

76, 343
PER encoding 446

APDU see PDU
APDV . 24
Apollo Computer Inc. 60, 490

APPLICATION 210–211, 217, 229
application entity 24
Application layer19, 24–26, 80
Arab alphabet 184
arbitrary . 299
arc (definition) 157
argument . . .see parameter (actual

∼)
Armenian alphabet 183
ASCII see IA5String

ASHRAE .455
ASN.1:1988/89 62
ASN.1:1990 62–63

compatibility with
ASN.1:94/97 72–73

migration to ASN.1:94/97 73–
77

ASN.1:1994 63–66
compatibility with ASN.1:90

72–73
translation into ASN.1:1990 77

ASN.1:1997 . 68
compatibility with ASN.1:90

72–73
translation into ASN.1:1990 77

ASN.2 . 61
asn1 . 159
ASN1-CHARACTER-MODULE . . 179, 185,

186, 189, 190, 196, 197
asn1@oss.comxxii
asn1@rd.francetelecom.fr xxii
Asnp . 470
AssignedIdentifier 117
Assignment 108
assignment 106–110,

see type, value, value set,
class, object, object set

AssignmentList 108, (114)
associated table 329, 349
association . 25
asymmetrical communication . . 12
at-sign .see “@”
ATN . 91
AtNotation 350

asn1@oss.com
mailto:asn1@oss.com
asn1@rd.francetelecom.fr
mailto:asn1@rd.francetelecom.fr

INDEX 545

ATTRIBUTE . 327
AttributeIdAndValue 342–353
AttributeValueAssertion 353
authentication 356, 418
automatic tagging

CHOICE 238
SEQUENCE 223
SET . 227

AUTOMATIC TAGS . 38, 113, 217, 250,
252, 428

– B –
BACnet . 455
bag . 233
base . 144
basic

∼ encoding rulessee BER
∼ multilingual plane (BMP)

183
∼ type46, 127–204
PER encoding variant . . . 428,

445, 446
basic-encoding 159
BEGIN 111, 113, 217, 365
Bell (Melville) 3
BER 21, 62, 87, 159, 206, 216, 231,

250, 258, 393–416
comparison with PER 427

ber-derived 159
big Endian 9, 454
binary stringsee BIT STRING &

OCTET STRING

Binary XML 459
biotechnology 92
bit (first, last, high/low-order) 145
bit-map446, 447
BIT STRING 124, 145–150, 152, 362

BER encoding 402–404
PER encoding 442
subtyping 267, 284

bit string44, see BIT STRING &
OCTET STRING

BitStringType (109), 149
BitStringValue (109), 150

BMP . 183
Bmp . 190
BMPString 65, 189–190, 192

BER encoding 406
PER encoding 443
subtyping 265, 270, 271

BOOLEAN 128–129
BER encoding 398
PER encoding 440

BooleanType (109), 128
BooleanValue (109), 129
Boyer-Moore 191
bstring 100, 150, 153
building automation 455
BuiltinType109
BuiltinValue 109, (348)
business transactions see

e-business
BY see ANY DEFINED BY,

CONSTRAINED BY, ENCODED

BY, IDENTIFIED BY

BYTE STRING 151

– C –
C464, 467, 468, 488, 490, 491
C++294, 464, 467, 472
C-SET . 89
Caml . 10
canonical

∼ tag order 228, 251
∼ encoding rulessee CER
PER encoding variant . . . 428,

445, 446
CAPTAIN .180
card

Social Security 92
with integrated circuits92

case . 45
ccitt . 158
CCR . 26, 80
Cell . 189, 196
CEN . 92
CEPT . 180
CER 66, 159, 417–422

546 INDEX

CH-A, CH-B 412
chained-list 130
character abstract syntax 306
CHARACTER STRING 65, 306–308

BER encoding 412
PER encoding 449
subtyping 279, 281

CharacterStringList188, 196
CharacterStringType . . . (109), 192
character string type 171–204,

306–308
BER encoding 406
PER encoding 443–445
subtyping 265, 267, 270

CharacterStringValue . . (109), 195
character transfer syntax 306
CharsDefn188, 196
check boxes146
check optical recognition184
Chill . 468
Chinese ideograms 184
Chip-SET . 89
CHOICE 34–39, 63, 64, 235–239, 244,

246
automatic tagging238
BER encoding 408–409
PER encoding 448–449
subtyping 277–283

ChoiceType (109), 237
ChoiceValue (109), 239
CLASS . . . 49, 65, 312, 317, 358, 362
Class . 217
class

field categories 314
information object ∼ . . 49–51,

65, 310–321, 325–329, 375
tagging ∼ 206–211

ClassNumber 217
client-server 30
CMIP . 86, 159, 200, 244, 485, 491
CMOT . 86
COBOL . 468
coffee machine 483
combining character 185

comment44, 45

formal ∼ . . 101, 107, 162, 467

comment . 101

comparator 471

compatibility

∼ between character string
types 197–198

∼ between information object
classes317

∼ between types see type
compatibility

∼ rules 121–126

compilation process 464, 465

compiler 14, 463–468

COMPLEX . 368

complex numbers 368–371

COMPONENT (WITH) 277, 281

component

∼ relation constraint 344–355

definition 218

referenced ∼ 351

referencing ∼ 351

ComponentConstraint 282

ComponentIdList 351

ComponentRelationConstraint . . 350

COMPONENTS (WITH) 277, 281

COMPONENTS OF . . 221, 223, 226, 228

ComponentType 223, 228

ComponentTypeList 223, 227

ComponentTypeLists222, 227

compression 303, see PER

concrete syntax 21

conformance sets 279

conformance statement . see PICS

CONSTRAINED BY 169, 294, 296, 358,
376

ConstrainedType (109), 259

constraining set 343

Constraint (232), (234), (259),
(267–269), (277), (282),
293, 349

constraint . see subtype constraint

combinations 285–291

INDEX 547

component relation ∼ . . . 344–
355, 413

effective ∼ (PER) . . .430–432,
434

outermost (definition) 260
PER-visible ∼ 429–435
table ∼ 51, 343–352, 357
user-defined ∼ see

CONSTRAINED BY

ConstraintSpec 293, 349
constructed type 46, 218–256
contacts xxii–xxiii
ContainedSubtype 263, (291)
CONTAINING 149, 152, 153, 283, 284
contents xx–xxii
ContentsConstraint 284, (349)
context-negotiation 300, 303
context-specific (tagging class) 229
control see encoding control
CORBA see IDL
Corean ideograms 184
correspondence between values see

type compatibility
Courier (notation) . . . 60, 206, 488
cryptography see encryption
CSN.1 . 460
CSTA . 91
cstring 101, 188, 195, 196
Cyrillic alphabet 183

– D –
DAM . 57
DAP . 83
data-value 358
data-value-descriptor 299
database 23, 472
Data Link layer 19
decoding see encoding rules
DEFAULT219, 223, 226, 228,

318–321
in information object classes

312
DefaultSyntax 322
defect report57

DEFINED BY see ANY DEFINED BY

DefinedObject . . .120, (321), (341),
(388)

DefinedObjectClass (110), 119,
(296), (317), (320, 321),
(347), (358), (385), (388)

DefinedObjectSet 120, (336), (341),
(350), (388)

DefinedSyntax (321), 326
DefinedSyntaxToken 326
DefinedType (109), 118
DefinedValue . . . (99), (110), (117),

119, (134), (140), (149),
(166, 167), (170), (188),
(196), (217), (256)

definite form (BER) .395, 396, 499
definition see type, value, value set,

class, object, object set
DEFINITIONS 111, 113, 217
DefinitiveIdentifier 113
DefinitiveNameAndNumberForm 114
DefinitiveNumberForm 114
DefinitiveObjectIdComponent . . . 114
DER 66, 84, 159, 219, 417–423
Descartes . 31
digital signature 418, 422, 429
dingbats . 184
direct-reference 299, 300
directive . . .101, 467, see comment

(formal ∼)
directory see X.500
DirectoryString 379
distinguished encoding rules . . .see

DER
DNIC . 158
Draft Amendment 57
DTAM . 23, 88
DummyGovernor 386
DummyReference 386
dummy reference . . .see parameter

(formal ∼)
dynamically constrained . see type

(dynamically constrained
∼)

548 INDEX

dynamical parameter see type
(dynamically constrained)

dynamic conformance . . . see PICS

– E –
e-business89, 422
e-mail see X.400
ECN . 459–460
EDI . 88, 155
EDIFACT 492–494
effective constraint . . 430–432, 434
electronic business . see e-business
Elements 290, 336
ElementSetSpec 289, 335
ElementSetSpecs . . . 288, 294, 333,

(349)
Elems 290, 335
EMBEDDED PDV 65, 301–304, 306

BER encoding 412
PER encoding 449
subtyping 279, 281

EmbeddedPDVType (109), 304
EmbeddedPDVValue . . . (109), 304
empty . 366
ENCODED BY 149, 152, 153, 283, 284
encoder optimization 472
encoding .300
ENCODING-CONTROL 460
encoding control . . 70, 71, 459–460
encoding/decoding simulations

499–508
encoding rules 15, 21

canonical ∼see CER
distinguished ∼see DER
encoding control see encoding

control
lightweight ∼ see LWER
octet ∼ see OER
packed ∼ see PER
signalling specific ∼ . see SER
XML ∼see XER

ENCRYPTED . 375
encryption . . . 23, 87, 89, 145, 295,

303, 332, 418

END111, 113, 217, 365
end-of-content octets396, 403
ending zero bits . . see trailing zero

bits
ENUMERATED 34, 64, 132, 133,

135–140, 246
BER encoding 399
PER encoding 441

EnumeratedType (109), 139
EnumeratedValue (109), 140
Enumeration 140
enumeration index 441
EnumerationItem 140
Enumerations 139
ENV 12018 . 92
EP-A, EP-B 412
ERROR . 486
EXCEPT 65, 290, 330, 335
ExceptionIdentification 256
exception marker see “!”
ExceptionSpec . . (139), 255, (293),

(349)
Exclusions 290, 335
explicit see tagging (∼ mode)
EXPLICIT .216
EXPLICIT TAGS113, 213, 217
exponent .144
EXPORTS 111, 112, 115, 383
Exports .115
extensibility 247, see “...”
EXTENSIBILITY IMPLIED . . 113, 114,

251, 252
extensible constraint 291
extensible for PER encoding . 432,

435
extension

∼ addition 253, 294
∼ addition group . . . 223, 225,

228, 230, 239, 253
∼ insertion point 67, 237, 294
∼ root 249, 253, 294
∼ marker see “...”

ExtensionAddition 222, 227
ExtensionAdditionAlternative . 238

INDEX 549

ExtensionAdditionAlternatives 237
ExtensionAdditionAlternativesList

238
ExtensionAdditionGroup . 223, 227
ExtensionAdditionGroupAlternatives

238
ExtensionAdditionList . . . 222, 227
ExtensionAdditions 222, 227
ExtensionAndException (222),

(227), (237), 253
ExtensionDefault 114, (217)
ExtensionEndMarker 253
EXTERNAL65, 298–303, 357

BER encoding 410
PER encoding 449
subtyping 279, 281

ExternalObjectClassReference . 120
ExternalObjectReference 120
ExternalObjectSetReference . . . 121
external reference 117–121
ExternalType (109), 301
ExternalTypeReference . 118, (387)
ExternalValue(109), 302
ExternalValueReference 119, (387)

– F –
facsimile . 145
FALSE see BOOLEAN

fax . 145
field . 310

all categories 313–317
fixed-type value ∼ . . 315, 317,

318
fixed-type value set ∼ . . . 315,

318, 319
identifier ∼ 315
object ∼ 316, 318, 320
object set ∼ 317, 318, 321
type ∼ 315, 317, 318
variable-type value ∼ 316,

318, 319
variable-type value set ∼ 316,

318, 320
FieldName 321, 341, 347

fields . 312
FieldSetting 322
FieldSpec . 317
FilterItem 354
first part (definition) 338, 339
fixed . 303
fixed-type

∼ value field . . . 315, 317, 318
∼ value set field 315, 318, 319

FixedTypeFieldVal 348
FixedTypeValueFieldSpec 318
FixedTypeValueSetFieldSpec . . 319
font

teletype 99
italics . 99
sans serif 99

formal commentsee comment
formal modelsee semantic (∼

model)
Forward . 383
fragmentation (PER) 439
France Télécom xix, 457, 470, 471
free phone numbers 91
FROM 115, 265, 268, 269
FTAM 81, 300, 481
FTLWS . 454
FullSpecification 281
fully-aligned 456
FUNCTION (example) 313
functional profile 378
Furniss (Peter) 69

– G –
GDMO .77, 90, 155, 159, 482–486,

491
GenBank . 92
GeneralConstraint (293), 349
GeneralizedTime199–201

BER encoding 406
PER encoding 445
subtyping 201

GeneralString 182, 192
BER encoding 406
PER encoding 445

550 INDEX

subtyping 269, 271
Georgian alphabet 183
global

∼ parameter 67, 390
∼ tagging mode . . see tagging

(∼ mode)
GlobalModuleReference 116
glyph . 173
Governor 296, 385
governor 379, 380

categories 380
GraphicString 181, 192

BER encoding 406
PER encoding 445
subtyping 269, 271

Greek alphabet 183
green numbers 91
Group 189, 196
GSM . 457, 481
Gulliver . 9, 145

– H –
H.200 .86
H.225 . 86, 468
H.245 .86
H.320 .86
H.323 .86
handles-invalid-encodings . . . 360,

362
HAS PROPERTY 362
health informatics 92
Hebrew alphabet 184
hexadecimal string see BIT STRING

& OCTET STRING

high/low-order bit 145
high rate transfer 426
history . 60–72
HSCR . 454
hstring 101, 150, 153
http://asn1.elibel.tm.fr . . xxii, 113,

470

– I –
IA5183, see IA5String

IA5String 174, 177–179, 192

BER encoding 406
PER encoding 443
subtyping 265, 270, 271

&id .362
identified-organization 158
IDENTIFIED BY 358, 362
identifier .44
identifier 366
identifier . 101
identifier field 315
IdentifierList 150
ideograms 180, 184
IDL . 490–492
IEC . 54, 59, 62
IElems 290, 335
IMAGINARY . 251
implicit see tagging (∼ mode)
IMPLICIT .216
IMPLICIT TAGS113, 213, 217
IMPORTS . . . 111, 112, 115, 118, 383
Imports . 115
INAP .91
INCLUDES 232, 234, 262, 263
Includes . 263
indefinite form (BER) . . . 396, 397,

499
indirect-reference 299, 300
INFINITY

MINUS-INFINITY144
PLUS-INFINITY 144

information object see object
∼ classsee class
∼ set see object set

inheritance 311
InnerTypeConstraints . . . 277, 281,

(291)
INSTANCE OF 66, 301, 357–358

BER encoding 411
PER encoding 449
subtyping 279, 281

InstanceOfType (109), 358
InstanceOfValue (109), 359
INTEGER 35, 123, 130–136

BER encoding 398–399

http://asn1.elibel.tm.fr

INDEX 551

PER encoding 440
subtyping 265

IntegerType (109), 133
IntegerValue (109), 134
intelligent networks . . 91, 203, 471
intelligent transportation systems

92, 167, 456, 459
inter-functioning . see interworking
inter-operability . see interworking
interface ASN.1/C++ 471
internal representation modes . . . 8
International Standard57
International Standardized Profile

see ISP
Internet 86–88, 426
INTERSECTION 65, 290, 330, 335
IntersectionElements 290, 335
IntersectionMark 290, 335
Intersections290, 335
interworking 47, 74, 143, 173, 222,

245, 252, 258, 264, 266,
268, 279, 378, 389

IS see International Standard
ISDN 25, 91, 226, 457, 481
ISO . 54–57, 59

breakdown structure 55
iso . 158
ISO (standards)

646 172, 176, 193, 195
2022 177, 182
2375 180, 182
3166-1 158
6093 142, 400
6523 . 158
7498-1 . 18
7498-3 154
7816-4 . 92
8571-4 . 81
8601 199, 201
8613-5 . 88
8650-1 . . . 25, 77, 80, 135, 241,

299, 356
8822 . 20
8823-1 . . . 20, 77, 80, 132, 295

8824 . 62
8824-1 97–294, 297–308
8824-2 310–362
8824-3 294–297, 336–355
8824-4 377–390
8825 . 62
8825-1 393–423
8825-2 425–452
8825-3 460
8832 . 81
8859 172, 185
9041 . 81
9066-2 25, 80
9072-2 . .25, 77, 154, 242, 280,

371, 374
9506 . 91
9594 . 83
9596-1 . 90, 159, 200, 244, 280
9646 . 90
9646-3 480
9735 see EDIFACT
9805-1 26, 80
9834-1 . 67, 68, 114, 154, 156–

158, 162, 198, 199, 404
9834-3 159
10021 see X.400
10163-1 87
10165-4 90, 155, 159, 484
10646-1 65, 172, 183, 185, 194,

306
10646-1Amd2 . . 188, 190, 194
13522 . 84
13712-1 see ROSE
13712-1 25, 80, 236, 248, 288,

295, 311, 383
14750 . 491

ISO646String 176, 192
BER encoding 406
PER encoding 443
subtyping . 265, 266, 270, 271

ISP 378, 389, 429
ISUP . 459
items . 100–104
ITU . 58–59

552 INDEX

ITU-T . 58
itu-t . 158

– J –
Japanese ideograms184
Java 184, 464, 468, 488
joint-iso-ccitt 159
joint-iso-itu-t 159
JTC 1 . 55, 62

breakdown structure 56
JTM . 81

– K –
Kanji . 180
Katakana . 180
Kerberos87, 200
known-multiplier character string

type 175

– L –
LALR(1) . 469
λ-calculus . 377
Lao . 184
Larmouth (John) 61
last field name (definition) . . . 338,

339
Latin 1 . 183
layer

Application (7) . 19, 24–26, 80
Data Link (2) 19
Network (3) 19
Physical (1) 19
Presentation (6) . . . 19–24, 80,

298
Session (5) 19
Transport (4) 19

Lego . 206
length determinant438–440
lexeme . 45, 100
lexical tokens 99–104

definition 98
lift . 479
LINK-DEFINITIONS 460
linked-list . 130
Literal . 326

little Endian 9, 454
LL(1) . 470
LL(k) . 469
local reference 117–121
localvaluereference63
low/high-order bit 145
lower-case/upper-case 45
LowerEndPoint 265, 270
LowerEndValue 265, 270
LWER 454–455

– M –
MACRO . 365
macro . . .61, 63, 65, 68, 74, 76, 86,

242, 311, 363–376
disadvantages 373–374
migration to ASN.1:94/97 74,

374–376
substitutes 374–376

mailing lists xxii–xxiii
managed objectsee GDMO
mantissa .144
MAP . 91
marker

exception ∼ see “!”
extension ∼ see “...”

MATCHING-RULE 328
matrix 329, 349

projection337
MAX 264, 265, 270
MBER . 458
Medline . 472
member-body 158
memory space . 131, 152, 258, 266,

292
Mesa . 60, 488
message handling system see

X.400
MHEG 84, 468
MHS see X.400
mhs-motif . 159
millennium bug 67, 202, 203
MIN 264, 265, 270
Minitel . 181

INDEX 553

MINUS-INFINITY 144
MIT . 87
MMS . 91
mode (tagging ∼) 211–213

global tagging ∼213–218
model see semantic (∼ model)
module . . . 36, 51–52, 110–117, see

DEFINITIONS

object identifier . . .51, 74, 163
structure 36

ModuleBody 114, (217)
ModuleDefinition 113, 217
ModuleIdentifier 113, (217)
modulereference102, 113, 116,

118–121
MOTIS . 81
ms . 159
MSC . 477
multimedia 84–86, 426, 468
MultipleTypeConstraints . . . (277),

281

– N –
NameAndNumberForm . . 167, 170
NamedBit . 149
NamedConstraint 282
NamedNumber134, 140
NamedType 225, 229, 239
NamedValue 225, 230
NameForm 114, 166
naming scheme 156
NAPLPS . 181
National Body 54
NB see National Body
NCA . 490
NCBI . 92, 472
NDR . 60, 490
negotiation 20–24
NEMA 455, 456
Netlink . 92
network-operator 158
Network layer 19
network management . see GDMO
newline . 45

NFS . 488
NIDL . 11, 490
NIS . 488
normalization process 121–124
normally small non-negative whole

number437
NTCIP . 456
NULL . 129–130

BER encoding 398
PER encoding 440

NullType (109), 130
NullValue (109), 130
number . 366
number . . . 102, 103, 114, 149, 189,

196, 197, 217
NumberForm 167, 170
NumericRealValue 144
NumericString 33–38, 174, 192

BER encoding 406
PER encoding 443
subtyping . 265, 266, 270, 271

– O –
Object . . . (110), (296), (320), 321,

(322), (326), (336), (385),
(388)

object 50, 313–322, 326–327
∼ field 316, 318, 320
∼ field categories 313–317

ObjectAssignment 110
ObjectClass (110), 317, (385)
ObjectClassAssignment 110
ObjectClassDefn 317
ObjectClassFieldType . . (109), 347,

353
ObjectClassFieldValue . (109), 348
objectclassreference . 102, 110, 117,

119, 120, 387
ObjectDefn 321
ObjectDescriptor . . . 162, 198–199,

301
BER encoding 406
PER encoding 445

554 INDEX

objectfieldreference . . 102, 320, 321,
341, 347

ObjectFieldSpec320
ObjectFromObject (321), 340
OBJECT IDENTIFIER . . . 22, 153–167,

305, 307, 358, 362
BER encoding 404–405
PER encoding 443

object identifier of a module . . 51,
74, 163

ObjectIdentifierType . . . (109), 165
ObjectIdentifierValue (109), (117),

166
Objective Caml 10
ObjectOptionalitySpec 320
objectreference . 102, 110, 117, 120,

387
ObjectSet (110), (296), (321, 322),

(326), 331, (349), (385),
(388)

object set 50, 312, 329–331
∼ field 317, 318, 321

ObjectSetAssignment 110
ObjectSetElements (290), 336
objectsetfieldreference 102, 321,

341, 347
ObjectSetFieldSpec 321
ObjectSetFromObjects . . (336), 340
ObjectSetOptionalitySpec 321
objectsetreference . . . 102, 110, 117,

120, 121, 326, 387
ObjectSetSpec 332
ObjIdComponents 166
octet-aligned 299
OCTET STRING 86, 149, 151–153,

301, 303, 305
BER encoding 404
PER encoding 442
subtyping 267, 284

octet string . . 44, see OCTET STRING

OctetStringType (109), 152
OctetStringValue(109), 153
ODA . 88, 422
ODIF . 88

OER . 456–457
OF see COMPONENTS OF, INSTANCE OF,

SEQUENCE OF, SET OF

OMG IDL see IDL
open type 315, 343, 347, 381

BER encoding 412–413
PER encoding 445
subtyping 347, 352

OpenTypeFieldVal 348
OPERATION 40, 75, 76, 80, 311,

371–373, 375, 486
optimization (encoder) 472
OPTIONAL 33–38, 219, 223, 226, 228,

282, 318–321
in information object classes

312
OptionalExtensionMarker . . (222),

(227), (237), 253
OptionalGroup 325
OSI 17–27, 59, 80–81

7-layer ∼ model 18
OSS Nokalva . . xviii, xxii, 77, 468,

499
OTHER-FUNCTION (example) 314
outermost constraint 260

– P –
P-CONNECT 22–23
PABX . 91
packed-encoding 159
packed encoding rules . . . see PER
Parameter .385
parameter 65, 331, 369, 375,

377–390
∼ of the abstract syntax .331,

361, 379, 384, 389–390
actual ∼ 379
categories 380
dynamical ∼ . . . see type (dy-

namically constrained ∼)
formal ∼ 379
global ∼ 67, 390

ParameterizedAssignment . . (108),
384

INDEX 555

ParameterizedObject . (321), (341),
388

ParameterizedObjectAssignment .385
ParameterizedObjectClass . . (317),

388
ParameterizedObjectClassAssignment

385
ParameterizedObjectSet (336),

(341), 388
ParameterizedObjectSetAssignment 385
ParameterizedReference 117
parameterized reference . . 387–388
ParameterizedType (118), 387
ParameterizedTypeAssignment . . 384
ParameterizedValue (119), 387
ParameterizedValueAssignment . 384
ParameterizedValueSetType (118),

387
ParameterizedValueSetTypeAssignment

384
ParameterList 385
ParamGovernor 385
parent type 261
PartialSpecification 281
Pascal . 468
PATTERN 271–273
PatternConstraint 273, (291)
PDAM . 57
PDU . . 38, 106, 236, 359, 389, 390
PDVsee EMBEDDED PDV

PER . 21, 66,
86, 91, 92, 148, 159, 215,
216, 250, 258, 264, 425–
452, 458, 459

∼ visible constraint . .429–435
comparison with PER 427
NEMA ∼ 456

Perec (Georges) . iii, 135, 153, 172,
287

PermittedAlphabet 269, (291)
phonetic alphabet 183
Physical layer19
PICS 186, 379, 384, 389
PKCS . 87

Plane .189, 196
PLUS-INFINITY 144
PLV (PER format) 426
PPDU . 80
PPDV . 23
PresenceConstraint 282
PRESENT . 282
presentation-context-id 300, 302,

303
presentation-context-identifier

361
presentation context 23, 361

∼ negotiation 22
∼ switching types . . . 297–308

Presentation layer . 19–24, 80, 298
pretty-printer471
primitive . 22
PrimitiveFieldName 321, 341, 347
PrintableString . . 33–38, 176, 192

BER encoding 406
PER encoding 443
subtyping . 265, 266, 270, 271

PRIVATE 211, 217, 229
production

alternative (|) 99
definition 99

PROPERTY .362
&property 362
Proposed Draft Amendment . . . 57
protocol . 38–40

– Q –
Q24/7 . 59
Quadruple 189, 196
question .158
question (ITU-T) 59

– R –
reading directions xxi
REAL 64, 130, 133, 140–144

BER encoding 400–402
compatibility with

ASN.1:94/97 73
PER encoding 441
subtyping 265, 279, 281

556 INDEX

RealType(109), 143
RealValue (109), 144
recode . 197
recommendation 158
recommendation ITU-T see

the corresponding recom-
mendation number

recursive
information object or class 316
type 46, 47
value . 47

Reference 117, 387
reference .44

∼ node 167
parameterized ∼387–388
short ∼ 339

referenced component 351
ReferencedObjects 341
ReferencedType 109
ReferencedValue 110, (348)
referencing component 351
regexp 271–275
registration-authority158
registration-procedures 159
registration scheme 156
registration tree . 67, 111, 156, 161
regular expressions 271–275
RELATIVE-OID 70, 166–170

BER encoding 405–406
PER encoding 443

RelativeOIDComponents 170
RelativeOIDType(109), 169
RelativeOIDValue (109), 169
relay application . . . 249, 250, 299,

302, 418
RequiredToken 325
RestrictedCharacterStringType 192
RestrictedCharacterStringValue

188, 195
RFC . 86, 160
RFC 822 . 492
RFID . 92, 167
RNIS . 86
ROOT . 169

root (extension ∼) 253, 294
RootAlternativeTypeList 237
RootComponentTypeList . 222, 227
RootElementSetSpec . . . 289, (294),

334
RootEnumeration 139
ROSE 25, 30, 77, 80, 154, 236, 242,

248, 280, 288, 295, 311,
364, 371–375, 382, 488

Row . 189, 196
RPC 60, 488, 490
RPCGEN . 488
RPOA . 58
RTSE . 25, 80
rule (semantic ∼) 99
run-time parameter . see type (dy-

namically constrained ∼)
Russian alphabet 183

– S –
SC see SubCommittee
SC 2 . 56, 183
SC 6 . 56, 69
SC 21 . 56
SC 33 . 56, 69
SCCP . 459
SDL . . 90, 102, 104, 108, 248, 466,

476–480
second part (definition) . . 338, 339
selection 239–240

subtyping 259
SelectionType (109), 240
self-referencial see recursive
semantic

model 67, 69, 70, 121–126, 467
rule . 99

numbering 100
semicolon see “;”
SEQUENCE . 32–38, 64, 218–225, 232,

234, 244, 246, 268
automatic tagging223
BER encoding 406–407
PER encoding 446–447
subtyping 277–283

INDEX 557

SEQUENCE OF 32, 130, 230–233
BER encoding 408
PER encoding 448
subtyping 259, 266, 267,

275–277
SEQUENCE OF ANY 241
SequenceOfType(109), 232
SequenceOfValue (109), 232
SequenceType (109), 222
SequenceValue . . (109), (144), 225,

(302), (304), (308)
SER . 457–458
Session Layer 19
SET 64, 226–230, 232, 234, 244,

246, 268
automatic tagging227
BER encoding 407
PER encoding 447
subtyping 277–283

set see object set or value set
∼ combination 285–291
∼ operators 286

SET (Secured Electronic Transac-
tion) 89

SET OF 130, 233–234
BER encoding 408
PER encoding 448
subtyping 259, 266, 267,

275–277
SET OF ANY 241
SetOfType (109), 233
SetOfValue (109), 234
Setting 322, 326
SetType (109), 227
SetValue (109), 229
SG see Study Group
SGML . 84
SG VII . 59
SG VIII . 59
signalling 19, see SER
signature see digital signature
SIGNED . 76, 375
SignedNumber . . 103, (134), (140),

(256)

SimpleDefinedType 387
SimpleDefinedValue 387
SimpleTableConstraint349
simple type see basic type
simulations 499–508
single-ASN1-type 299, 361
SingleTypeConstraint . . 277, (281)
SingleValue 261, (291)
site see http://asn1.elibel.tm.fr
SIZE 33–38, 232, 234, 266, 267
SizeConstraint 232, 234, 267, (291)
SMTP . 82
SNMP . 86
social security card 92
SpecialRealValue144
specification 51, 52

comparator 471
method 31

SQL . 472
SS7 . 91
standard .158
standards54, see ISO
static conformance see PICS
Steedman (Douglas) 60
stegosaurus . 9
STMP . 456
STRING . see BIT STRING, CHARACTER

STRING, OCTET STRING

String

BMPString189–190, 192
GeneralString 182, 192
GraphicString 181, 193
IA5String177–179, 193
ISO646String 176, 193
NumericString 174, 193
PrintableString 176, 194
T61String179–180, 194
TeletexString . . 179–180, 194
UniversalString 183–189, 194
UTF8String190–192, 194
VideotexString . 180–181, 195
VisibleString 176, 195

string .44

http://asn1.elibel.tm.fr

558 INDEX

binary ∼ . . . see BIT STRING &
OCTET STRING

bit ∼ see BIT STRING & OCTET

STRING

character ∼ see character
string type

hexadecimal ∼ see BIT STRING

& OCTET STRING

octet ∼ see OCTET STRING

string . 366
structured type . . . see constructed

type
stub compiler 464
Study Group 59
style sheet . . . see encoding control
SubCommittee55
subtype

regular expressions 273
SubtypeConstraint see

ElementSetSpecs
subtype constraint . . . 47, 257–297,

see constraint
∼ by type inclusion . .261–263
∼ on SEQUENCE OF or SET OF el-

ements275–277
∼ on SEQUENCE, SET or CHOICE

components 277–283
∼ on the content of an octet or

bit string 283–284
constraint combinations . . 65,

285–291
contained subtype . . . 261–263
extensibility 291–294
permitted alphabet . 268–271,

see FROM

regular expressions . . 271–275
set combination see constraint

(combinations)
single value 260–261
size constraint . . .266–268, see

SIZE

user-defined constraint . . 294–
297, see CONSTRAINED BY

value range 263–266

SubtypeElements 291, (336)
Sun Microsystems Inc. . . . 60, 184,

488
Swift (Jonathan) 9, 145
switching . 300
Symbol . 117
SymbolsExported 115
SymbolsFromModule 115
SymbolsImported 115
symmetrical communication . . . 12
syntactic editor 470
syntactic entity (definition) . . . 368
SYNTAX . see ABSTRACT-SYNTAX, WITH

SYNTAX

syntax 300, 303, 358
syntax (user-friendly ∼)312,

323–327, 375
syntaxes 302, 303
SyntaxList .325

– T –
T.38 . 86
T.50 . 177
T.120 . 84
T.415 . 88
T.431 . 88
T61String 179–180, 192

BER encoding 406
PER encoding 445
subtyping 269, 271

TableColumn 197
TableConstraint 349
table constraint . .51, 343–352, 357
TableRow . 197
tabulation . 45
Tag . 216
tag35, see tagging

canonical order 228, 251
Tag, Length, Value 206, 394
TagDefault(113), 217
TaggedType (109), 216
TaggedValue 110
tagging 47, 206–218

∼ class 206–211

INDEX 559

∼ mode211–213,
see APPLICATION, PRIVATE,
UNIVERSAL

global tagging mode . . 213–
218

automatic ∼ . . . see AUTOMATIC

TAGS

CHOICE 238
SEQUENCE 223
SET . 227

BER encoding 409
PER encoding 449
table of UNIVERSAL tags . . . 209

TAGS . 217
Tahiti . 20
TC see Technical Committee
TC 97 . 55
TC 204 . 457
TC 251 . 92
TDED . 493
Technical Committee 55
technical corrigendum 57
telematics . 92
Teletex 59, 179
TeletexString 179–180, 192

BER encoding 406
PER encoding 445
subtyping 269, 271

Telex . 493
TERENA . 197
terminal (definition) 98
Thai . 184
TLV format 206, 394, 395
TMN see GDMO
TokenOrGroupSpec 325
tools . 463–473

directives see comment
(formal ∼)

trailing zero bits 147, 420, 429, 442
transfer-syntax 303
transfer syntax21–24, 393–460
transformation (tagging virtual ∼)

224, 229, 238, 255
Transport layer 19

triad of syntaxes 15
TRUE see BOOLEAN

TTCN 90, 480–482
Tuple (188), 197
tutorial . 29–41
two’s-complement 399
Type 109, (110),

(216), (223), (225), (228,
229), (232–234), (239,
240), (256), (259), (263),
(268), (284), (296), (318,
319), (322), (326), (348),
(352), (384, 385), (388)

&Type . 362
type .45–48

∼ field 318
∼ assignment 106, 109
∼ compatibility 107
∼ field 315, 317
basic ∼ 46, 127–204
character string ∼ see

character string type
constructed ∼ . . . 46, 218–256,

see constructed type
dynamically constrained ∼ 68,

69
open ∼ see open type
parent ∼ (definition) 261
recursive ∼ 46, 47
selection ∼ see selection
self-referencial ∼ 46, 47
structured ∼ . see constructed

type
type . 366
Type, Length, Value 206, 394
type-id . 358
TypeAssignment 109
type compatibility 69
TypeConstraint (291), 352
TypeConstraints 281
typefieldreference 103, 321, 341, 347
TypeFieldSpec 318
TypeFromObject (109), 340
TYPE-IDENTIFIER . 66, 356, 358, 446

560 INDEX

TYPE NOTATION 365, 368
TypeOptionalitySpec 318
type reference 45
typereference . . .103, 109, 110, 117,

118, 326, 387
TypeWithConstraint 232, 234,

(259), 268

– U –
UCS-2 183, 184, 189
UCS-4 183, 184
UElems290, 335
UMLS . 92
UMTS . 91, 459
UN . 54, 58
unaligned (PER variant)428
underscore “ ” 44
Unicode see UniversalString,

BMPString, UTF8String,
ISO 10646-1

UNION65, 290, 330, 335
UnionMark 290, 335
Unions 289, 335
union symbol 261
UNIQUE312, 315, 318, 355, 358
Unique . 318
United Nations 54, 58
UNIVERSAL 207–208, 217, 228

table of all tags 209
tag 0 .397
tag 1 .128
tag 2 .133
tag 3 .149
tag 4 .152
tag 5 .130
tag 6 .166
tag 7 .199
tag 8 301, 358
tag 9 .143
tag 10 139
tag 11 304
tag 12188, 194
tag 13 169
tag 16222, 232

tag 17227, 233
tag 18 193
tag 19 194
tag 20 194
tag 21 195
tag 22 193
tag 23 202
tag 24 201
tag 25 193
tag 26193, 195
tag 27 192
tag 28188, 194
tag 29 307
tag 30188, 192

UniversalString . 65, 183–189, 192
BER encoding 406
PER encoding 443
subtyping 265, 270, 271

universal time coordinated see
UTC

UNIX rights 146
UnrestrictedCharacterStringType

(192), 307
UnrestrictedCharacterStringValue

(195), 308
upper-case/lower-case 45
UpperEndPoint 265, 270
UpperEndValue 265, 270
UsefulObjectClassReference .(119),

358, 362
UsefulType . . . (109), 199, 200, 202
user-defined constraint . . . 294–297
UserDefinedConstraint . 296, (349)
UserDefinedConstraintParameter

296
user-friendly syntax .312, 323–327,

375
UTC . 200
UTCTime 202–204

BER encoding 406
PER encoding 445
subtyping 203

UTF-8 (encoding) 190, 191
UTF8String 174, 190–192

INDEX 561

BER encoding 406
PER encoding 445
subtyping265, 269–271

– V –
VALUE 367, 370, see VALUE NOTATION

Value 109, (223), (225), (228),
(230), (232), (239), (256),
(261), (265), (270), (273),
(284), (296), (319), (322),
(326), (348), (359), (384),
(388)

value . 48–49
∼ assignment 106, 109
recursive ∼ 47
self-referencial ∼ 47

value 358, 359, 366, 367
ValueAssignment 109
ValueConstraint 282
valuefieldreference . . .103, 321, 341,

347
ValueFromObject (110), 339
value matching see type

compatibility
VALUE NOTATION 365, 368
ValueOptionalitySpec 319
ValueRange 265, 270, (291)
valuereference . . 103, 109, 117, 119,

387
ValueSet (110), (296), (319), (322),

(326), 333, (384), (388)
value set 107, 331

BER encoding 413
PER encoding 450

valuesetfieldreference 104, 319–321,
341, 347

ValueSetFromObjects . . (109), 339
ValueSetOptionalitySpec 319
ValueSetTypeAssignment 110
variable-type

∼ value field . . . 316, 318, 319
∼ value set field 316, 318, 320

variable constraint 384
VariableTypeValueFieldSpec . . 319

VariableTypeValueSetFieldSpec 320
version brackets see “[[”
VHDL .473
videoconferencing 84, 258
videophone 86, 426
Videotex 59, 180
VideotexString 180–181, 192

BER encoding 406
PER encoding 445
subtyping 269, 271

virtual transformation (tagging ∼)
224, 229, 238, 255

visible constraint 432
Visible Speech3, 4
VisibleString 176, 192

BER encoding 406
PER encoding 443
subtyping . 265, 266, 270, 271

VLSI . 473
VT . 81, 481

– W –
WAIS . 87, 458
WAP . 459
web site see http://asn1.elibel.tm.fr
WG see Working Group
WG 7 . 69
White (James) 488
whole number (PER) . see INTEGER

constrained ∼ 436
normally small non-negative ∼

437
semi-constrained ∼437
unconstrained ∼ 437

Windows 87, 184
wireless .459
WITH COMPONENT 232, 234, 276, 277,

281
WITH COMPONENTS 250, 277, 281,

303, 306
WITH SYNTAX 323, 325, 375
WithSyntaxSpec (317), 325
Word . 470
word . 104, 326

http://asn1.elibel.tm.fr

562 INDEX

Working Group 55

– X –
X.25 . 59
X.200 .62
X.208 .62
X.209 .62
X.227 .80
X.228 .80
X.229 see ROSE
X.400 56, 59, 60, 69, 77, 81–

83, 88, 155, 159, 176, 180,
203, 298, 300, 323, 418

X.40960, 62, 81, 364, 394
X.420 . 358
X.435 88, 155, 162
X.500 . . . 56, 66, 69, 77, 83–85, 91,

155, 157, 165, 180, 203,
243, 288, 306, 323, 327–
329, 354, 355, 418, 481

X.501 . 346
X.509 375, 418, 422, 468
X.519 . 288
X.520 .237, 379
X.680 see ISO 8824-1
X.681 see ISO 8824-2
X.682 see ISO 8824-3
X.683 see ISO 8824-4
X.690 see ISO 8825-1
X.691 see ISO 8825-2
X.692 . 460
X.700 .77
X.711 .90
X.722 .90
X.852 .80
X.880 80, 248, see ROSE
XDR 60, 413, 488–491
XER 71, 87, 458–459
Xerox . 60, 488
XML 192, 458, 494
XNS . 60

– Y –
Y2Ksee millennium bug
Yacc . 469

year 2000 see millennium bug

– Z –
z . 158
Z39.50 87, 182, 458
Z.100 . see SDL
Z.105 . 477–480, 509–513, see SDL
Z.107 477, 480, see SDL

	Contents
	List of Figures
	List of Tables
	Foreword
	Preface
	I Introduction and History of the Notation
	1 Prologue
	2 Utilitarian introduction to ASN.1
	2.1 A diversity of machine architectures
	2.2 A diversity of programming languages
	2.3 Conversion programs
	2.4 The triad: concrete syntax, abstract syntax, transfer syntax

	3 ASN.1 and the OSI Reference Model
	3.1 The 7-layer OSI model
	3.2 The Presentation layer
	3.3 The Application layer
	3.4 The OSI model in the future

	4 Your first steps with ASN.1
	4.1 Informal description of the problem
	4.2 How should we tackle the problem?
	4.3 Ordering an item: from general to particular
	4.4 Encoding and condition on distinct tags
	4.5 Final module
	4.6 A client-server protocol
	4.7 Communicating applications

	5 Basics of ASN.1
	5.1 Some lexico-syntactic rules
	5.2 Types
	5.3 Values
	5.4 Information object classes and information objects
	5.5 Modules and specification

	6 History
	6.1 International Organization for Standardization (ISO)
	6.2 International Telecommunications Union (ITU)
	6.3 The great story of ASN.1
	6.3.1 Birth
	6.3.2 Baptism
	6.3.3 The 1989 and 1990 editions
	6.3.4 The 1994 edition
	6.3.5 The 1997 edition

	6.4 Compatibility between the 1990 and 1994/1997 versions
	6.4.1 Composition rules of the two versions
	6.4.2 Migration from ASN.1:1990 to ASN.1:1997
	6.4.3 Migration from ASN.1:1994 to ASN.1:1990

	7 Protocols specified in ASN.1
	7.1 High-level layers of the OSI model
	7.2 X.400 electronic mail system
	7.3 X.500 Directory
	7.4 Multimedia environments
	7.5 The Internet
	7.6 Electronic Data Interchange Protocols (EDI)
	7.7 Business and electronic transactions
	7.8 Use in the context of other formal notations
	7.9 Yet other application domains

	II User's Guide and Reference Manual
	8 Introduction to the Reference Manual
	8.1 Main principles
	8.2 Editorial conventions
	8.3 Lexical tokens in ASN.1
	8.3.1 User's Guide
	8.3.2 Reference Manual

	9 Modules and assignments
	9.1 Assignments
	9.1.1 User's Guide
	9.1.2 Reference Manual

	9.2 Module structure
	9.2.1 User's Guide
	9.2.2 Reference Manual

	9.3 Local and external references
	9.3.1 User's Guide
	9.3.2 Reference Manual

	9.4 The semantic model of ASN.1

	10 Basic types
	10.1 The BOOLEAN type
	10.1.1 User's Guide
	10.1.2 Reference Manual

	10.2 The NULL type
	10.2.1 User's Guide
	10.2.2 Reference Manual

	10.3 The INTEGER type
	10.3.1 User's Guide
	10.3.2 Reference Manual

	10.4 The ENUMERATED type
	10.4.1 User's Guide
	10.4.2 Reference Manual

	10.5 The REAL type
	10.5.1 User's Guide
	10.5.2 Reference Manual

	10.6 The BIT STRING type
	10.6.1 User's Guide
	10.6.2 Reference Manual

	10.7 The OCTET STRING type
	10.7.1 User's Guide
	10.7.2 Reference Manual

	10.8 The OBJECT IDENTIFIER type
	10.8.1 User's Guide
	10.8.2 Reference Manual

	10.9 The RELATIVE-OID type
	10.9.1 User's Guide
	10.9.2 Reference Manual

	11 Character string types
	11.1 General comments
	11.2 The NumericString type
	11.3 The PrintableString type
	11.4 The VisibleString and ISO646String types
	11.5 The IA5String type
	11.6 The TeletexString and T61String types
	11.7 The VideotexString type
	11.8 The GraphicString type
	11.9 The GeneralString type
	11.10 The UniversalString type
	11.10.1 User's Guide
	11.10.2 Reference Manual

	11.11 The BMPString type
	11.12 The UTF8String type
	11.13 Reference Manual
	11.14 Character string type compatibility
	11.15 The ObjectDescriptor type
	11.15.1 User's Guide
	11.15.2 Reference Manual

	11.16 The GeneralizedTime type
	11.16.1 User's Guide
	11.16.2 Reference Manual

	11.17 The UTCTime type
	11.17.1 User's Guide
	11.17.2 Reference Manual

	12 Constructed types, tagging, extensibility rules
	12.1 Tagging
	12.1.1 Tags and tagging classes
	12.1.2 Tagging mode
	12.1.3 Global tagging mode
	12.1.4 Reference Manual

	12.2 The constructor SEQUENCE
	12.2.1 User's Guide
	12.2.2 Reference Manual

	12.3 The constructor SET
	12.3.1 User's Guide
	12.3.2 Reference Manual

	12.4 The constructor SEQUENCE OF
	12.4.1 User's Guide
	12.4.2 Reference Manual

	12.5 The constructor SET OF
	12.5.1 User's Guide
	12.5.2 Reference Manual

	12.6 The constructor CHOICE
	12.6.1 User's Guide
	12.6.2 Reference Manual

	12.7 Selecting a CHOICE alternative
	12.7.1 User's Guide
	12.7.2 Reference Manual

	12.8 The special case of the ANY type
	12.8.1 User's Guide
	12.8.2 Reference Manual

	12.9 Type extensibility
	12.9.1 User's Guide
	12.9.2 Reference Manual

	13 Subtype constraints
	13.1 Basics of subtyping
	13.1.1 User's Guide
	13.1.2 Reference Manual

	13.2 Single value constraint
	13.2.1 User's Guide
	13.2.2 Reference Manual

	13.3 Type inclusion constraint
	13.3.1 User's Guide
	13.3.2 Reference Manual

	13.4 Value range constraint
	13.4.1 User's Guide
	13.4.2 Reference Manual

	13.5 Size constraint
	13.5.1 User's Guide
	13.5.2 Reference Manual

	13.6 Alphabet constraint
	13.6.1 User's Guide
	13.6.2 Reference Manual

	13.7 Regular expression constraint
	13.7.1 User's Guide
	13.7.2 Reference Manual

	13.8 Constraint on SEQUENCE OF or SET OF elements
	13.8.1 User's Guide
	13.8.2 Reference Manual

	13.9 Constraints on SEQUENCE, SET or CHOICE components
	13.9.1 User's Guide
	13.9.2 Reference Manual

	13.10 Subtyping the content of an octet string
	13.10.1 User's Guide
	13.10.2 Reference Manual

	13.11 Constraint combinations
	13.11.1 User's Guide
	13.11.2 Reference Manual

	13.12 Constraint extensibility
	13.12.1 User's Guide
	13.12.2 Reference Manual

	13.13 User-defined constraint
	13.13.1 User's Guide
	13.13.2 Reference Manual

	14 Presentation context switching types
	14.1 The EXTERNAL type
	14.1.1 User's Guide
	14.1.2 Reference Manual

	14.2 The EMBEDDED PDV type
	14.2.1 User's Guide
	14.2.2 Reference Manual

	14.3 The CHARACTER STRING type
	14.3.1 User's Guide
	14.3.2 Reference Manual

	15 Information object classes, objects and object sets
	15.1 Introduction to information object classes
	15.2 Default syntax of information objects and classes
	15.2.1 User's Guide
	15.2.2 Reference Manual

	15.3 User-friendly syntax
	15.3.1 User's Guide
	15.3.2 Reference Manual

	15.4 Example: the classes ATTRIBUTE and MATCHING-RULE of the X.500 recommendation
	15.5 Value sets and information object sets
	15.5.1 User's Guide
	15.5.2 Reference Manual

	15.6 Accessing the information stored in objects and object sets
	15.6.1 User's Guide
	15.6.2 Reference Manual

	15.7 A simple case study of how to extract information modeled by a class
	15.7.1 User's Guide
	15.7.2 Reference Manual

	15.8 More complex examples of information extraction
	15.9 The pre-defined TYPE-IDENTIFIER class and INSTANCE OF type
	15.9.1 User's Guide
	15.9.2 Reference Manual

	15.10 The pre-defined ABSTRACT-SYNTAX class
	15.10.1 User's Guide
	15.10.2 Reference Manual

	16 Enough to read macros
	16.1 Historical background
	16.2 Why macros?
	16.3 General syntax of a macro
	16.4 First example: complex numbers
	16.5 Second example: the macro OPERATION of ROSE
	16.6 Main (and major!) disadvantages of macros
	16.7 Macro substitutes since 1994

	17 Parameterization
	17.1 Basics of parameterization
	17.2 Parameters and parameterized assignments
	17.2.1 User's Guide
	17.2.2 Reference Manual

	17.3 Parameters of the abstract syntax

	III Encoding Rules and Transfer Syntaxes
	18 Basic Encoding Rules (BER)
	18.1 Main principles
	18.2 Encoding of all types
	18.2.1 BOOLEAN value
	18.2.2 NULL value
	18.2.3 INTEGER value
	18.2.4 ENUMERATED value
	18.2.5 REAL value
	18.2.6 BIT STRING value
	18.2.7 OCTET STRING value
	18.2.8 OBJECT IDENTIFIER value
	18.2.9 RELATIVE-OID value
	18.2.10 Character strings and dates
	18.2.11 SEQUENCE value
	18.2.12 SET value
	18.2.13 SEQUENCE OF value
	18.2.14 SET OF value
	18.2.15 CHOICE value
	18.2.16 Tagged value
	18.2.17 Subtype constraints
	18.2.18 EXTERNAL value
	18.2.19 INSTANCE OF value
	18.2.20 EMBEDDED PDV value
	18.2.21 CHARACTER STRING value
	18.2.22 Information objects and object sets, encoding of a value of an open type
	18.2.23 Value set

	18.3 Properties of the BER encoding rules
	18.4 A complete example

	19 Canonical and Distinguished Encoding Rules (CER and DER)
	19.1 A need for more restrictive rules
	19.2 Canonical Encoding Rules (CER)
	19.3 Distinguished Encoding Rules (DER)

	20 Packed Encoding Rules (PER)
	20.1 Main principles of PER
	20.2 The four variants of encoding
	20.3 PER-visible subtype constraints
	20.4 Encodings of a whole number
	20.5 Length field encoding
	20.6 Encoding of all types
	20.6.1 BOOLEAN value
	20.6.2 NULL value
	20.6.3 INTEGER value
	20.6.4 ENUMERATED value
	20.6.5 REAL value
	20.6.6 BIT STRING value
	20.6.7 OCTET STRING value
	20.6.8 OBJECT IDENTIFIER value
	20.6.9 RELATIVE-OID value
	20.6.10 Character strings and dates
	20.6.11 Open type value
	20.6.12 SEQUENCE value
	20.6.13 SET value
	20.6.14 SEQUENCE OF value
	20.6.15 SET OF value
	20.6.16 CHOICE value
	20.6.17 Tagged type value
	20.6.18 EXTERNAL value
	20.6.19 INSTANCE OF value
	20.6.20 EMBEDDED PDV or CHARACTER STRING values
	20.6.21 Value set
	20.6.22 Information objects and information object sets

	20.7 A complete example

	21 Other encoding rules
	21.1 Light Weight Encoding Rules (LWER)
	21.2 BACnet encoding rules
	21.3 Octet Encoding Rules (OER)
	21.4 Signalling specific Encoding Rules (SER)
	21.5 XML Encoding Rules (XER)
	21.6 Encoding control

	IV ASN.1 Applications
	22 Tools
	22.1 What is an ASN.1 compiler?
	22.2 Notes on compiler usage
	22.3 Parsing ASN.1: a troublesome problem
	22.4 Other tools

	23 ASN.1 and the formal languages SDL, TTCN, GDMO
	23.1 The formal specification language SDL
	23.2 The TTCN language for test suites
	23.3 The GDMO notation for network management

	24 Other abstract syntax notations
	24.1 Sun Microsystems' XDR notation
	24.2 Apollo Computer's NIDL notation
	24.3 OMG IDL language for CORBA
	24.4 RFC 822 notation for the Internet
	24.5 EDIFACT notation

	25 Epilogue

	V Appendices
	A Encoding/decoding simulations
	B Combined use of ASN.1 and SDL
	Abbreviations
	Bibliography

	Index
	Symbols
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

